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Preface

In these notes I will describe how to use standard neoclassical theory to explain
business cycle �uctuations.
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Chapter 1

Introduction

1.1 The Questions

Business cycles are both important and, despite a large amount of economic
research, still incompletely understood. While we made progress since the fol-
lowing quote

The modern world regards business cycles much as the ancient
Egyptians regarded the over�owing of the Nile. The phenomenon
recurs at intervals, it is of great importance to everyone, and natural
causes of it are not in sight. (John Bates Clark, 1898)

there is still a lot that remains to be learned. In this class we will ask, and
try to at least try to partially answer the following questions

� What are them empirical characteristics of business cycles?

� What brings business cycles about?

� What propagates them?

� Who is most a¤ected and how large would be the welfare gains of elimi-
nating them?

� What can economic policy, both �scal and monetary policy do in order to
soften or eliminate business cycles?

� Should the government try to do so?

1.2 The Approach and the Structure of the Book

Our methodological approach will be to use economic theory and empirical
data to answer these questions. We will proceed in four basic steps with our

3



4 CHAPTER 1. INTRODUCTION

analysis. First we will document the stylized facts that characterize business
cycles in modern societies. Using real data, mostly for the US where the data
situation is most favorable we will �rst discuss how to separate business cycle
�uctuations and economic growth from the data on economic activity, especially
real gross domestic product. The method for doing so is called �ltering. Our
stylized facts will be quantitative in nature, that is, we will not be content with
saying that the growth rate of real GDP goes up and down, but we want to
quantify these �uctuations, we want to document how long a business cycle
lasts, whether recessions and expansions last equally long, and how large and
small growth rates of real GDP or deviations from the long run growth trend are.
In a second step we will then construct a theoretical business cycle model that
we will use to explain business cycles. We will build up this model up in several
steps, starting as a benchmark with the neoclassical growth model. At each step
we will evaluate how well the model does in explaining business cycles from a
quantitative point. In the process we will also have to discuss how our model
is best parameterized (a process we will either call calibration or estimation,
depending on the exact procedure) and how it is solved (it will turn out that we
will not always be able to deal with our model analytically, but sometimes will
have to resort to numerical techniques to solve the model). Into the basic growth
model we will �rst introduce technology shocks and endogenous labor supply,
which leads us to the canonical Real Business Cycle Model. Further extensions
will include capital adjustment costs, two sector models and sticky prices and
monopolistic competition. Once the last two elements are incorporated into
the model we have arrived at the New Keynesian business cycle model. In
a third step we will then evaluate the ability of the di¤erent versions of the
model to generate business cycles of realistic magnitude. Once the model(s)
do a satisfactory job in explaining the data, we can go on and ask normative
questions. The �nal fourth step of our analysis will �rst quantify how large
the welfare costs of business cycles are and then analyze, within our models,
how e¤ective monetary and �scal policy is to tame cyclical �uctuations of the
economy.



Chapter 2

Basic Business Cycle Facts

In this chapter we want to accomplish two things. First we will discuss how to
distill business cycle facts from the data. The main object of macroeconomists
is aggregate economic activity, that is, total production in an economy. This is
usually measured by real GDP or, if one is more interested in living standards
of households, by real GDP per capita or worker. But plotting the time series
of real GDP we see that not only does it �uctuate over time, but it also has a
secular growth trend, that it, is goes up on average. For the study of business
cycle we have to purge the data from this long run trend, that is, take it out of
the data. The procedure for doing so is called �ltering, and we will discuss how
to best �lter the data in order to divide the data into a long run growth trend
and business cycle �uctuations.
Second, after having de-trended the data, we want to take the business cycle

component of the data and document the main stylized facts of business cycles,
that is, study what are the main characteristics of business cycles. We want
to document the length of a typical business cycle, whether the business cycle
is symmetric, the size of deviations from the long run growth trend, and the
persistence of deviations from the long-run growth trend.

2.1 Decomposition of Growth Trend and Busi-
ness Cycles

In Figure 2.1 we plot the natural logarithm of real GDP for the US from 1947
to 2004. The reason we start with US data, besides it representing the biggest
economy in the world, is that the data situation for this country is quite favor-
able. There are no obvious trend breaks, due to, say, major wars, change in
the geographic structure of the country (such as the German uni�cation), and
real data are available with consistent de�ation for price changes over the entire
sample period. In exercises you will have the opportunity to study your country
of choice, but you should be warned already that for Germany consistent data
for real GDP are available only for much shorter time periods (not least because

5



6 CHAPTER 2. BASIC BUSINESS CYCLE FACTS

of the German uni�cation).
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Figure 2.1: Natural Logarithm of real GDP for the US, in constant 2000 prices.

A short discussion of the data themselves. The frequency of the data is quar-
terly, that is, we have one observation fro real GDP in each quarter. However,
the observation is for real GDP for the preceding twelve months, not just the
last three months. In that way seasonal in�uences on GDP are controlled for.
The base year for the data is 2000, that is, all numbers are in 2000 US dollars.
In terms of units, the data are in billion US dollars (Milliarden). For example
for 2004 real GDP is about

exp(9:3) � $10:000 Billion = $10 Trillion

or about $36; 000 per capita. Finally, why would we plot the natural logarithm
of the data, rather than the data themselves. Here is the reason: suppose an
economic variable, say real GDP, denoted by Y; grows at a constant rate, say g,
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over time. Then we have
Yt = (1 + g)

tY0 (2.1)

where Y0 is real GDP at some starting date of the data, and Yt is real GDP in
period t: Now let us take logs (and whenever I say logs, I mean natural logs, that
is, the logarithm with base e; where e � 2:781 is Euler�s constant) of equation
(2:1): This yields

log(Yt) = log
�
(1 + g)tY0

�
= log(Y0) + log

�
(1 + g)t

�
= log(Y0) + t � log [1 + g]

where we made use of some basic rules for logarithms.
What is important about this is that if a variable, say real GDP, grows at

a constant rate g over time, then if we plot the logarithm of that variable it is
exactly a straight line with intercept Y0 and slope

slope = log(1 + g) � g

where the approximation in the last equation is quite accurate as long as g is
not too large.1 Similarly, we need not start at time s = 0: Suppose our data
starts at an arbitrary date s (in the example s = 1947). Then if our data grows
at a constant rate g; the �gure for log(Yt) is given by

log(Yt) = log(Ys) + (t� s) log(1 + g);

and if s = 1947; then

log(Yt) = log(Y1947) + (t� 1947) log(1 + g)

Thus, if real GDP grew at a constant rate, a plot of the natural logarithm of
real GDP should be straight line, with slope equal to the constant growth rate.
Figure 2.1 shows that this is not too bad of a �rst approximation.
In this course, however, we are mostly interested in the deviations of actual

real GDP from its long run growth trend. First we want to mention that the
decision what part of the data is considered a growth phenomenon and what
is considered a business cycle phenomenon is somewhat arbitrary. To quote
Cooley and Prescott (1995)

1The fact that log(1 + g) � g can be seen from the Taylor series expansion of log(1 + g)
around g = 0: This yields

log(1 + g) = log(1) +
g � 0
1

� 1

2
(g � 0)2 + 1

6
(g � 0)3 + : : :

= g � 1

2
g2 +

1

6
g3 + : : :

� g

because the terms where g is raised to a power are small relative to g; whenever g is not
too big.
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Every researcher who has studied growth and/or business cycle
�uctuations has faced the problem of how to represent those features
of economic data that are associated with long-term growth and
those that are associated with the business cycle - the deviation
from the growth path. Kuznets, Mitchell and Burns and Mitchell
[early papers on business cycles] all employed techniques (moving
averages, piecewise trends etc.) that de�ne the growth component
of the data in order to study the �uctuations of variables around the
long-run growth path de�ned by the growth component. Whatever
choice one makes about this is somewhat arbitrary. There is no
single correct way to represent these components. They ares imply
di¤erent features of the same observed data.

Thus, while it is clear that �business cycle �uctuations� are the deviation
of a key economic variable of interest (mostly real GDP) from a growth trend,
what is unclear is how to model this growth trend. In the Figure above we
made the choice of representing the long run growth trend as a function that
grows at constant rate g over time. Consequently the business cycle component
associated with this growth trend is given by

yt = log(Yt)�log(Y trendt ) = log

�
Yt

Y trendt

�
= log

�
Yt � Y trendt

Y trendt

+ 1

�
� Yt � Y trendt

Y trendt

By using logs, the deviation of the actual log real GDP from its trend roughly
equals its percentage deviation from the long run growth trend. In Figure 2.2
we plot this deviation yt from trend, when the trend is de�ned simply as a linear
growth trend. From now on we will always use yt to denote the business cycle
component of real GDP.
The �gure shows that business cycles, so de�ned, are characterized by fairly

substantial deviations from the long run growth trend. The deviations have
magnitudes of up to 10%; and they are quite persistent: if in a given quarter real
GDP is above trend, it looks as if it is more likely that real GDP is above trend
in the next quarter as well. We will formalize this high degree of persistence
below by de�ning and then computing autocorrelations of real GDP. Before
doing this, however, observe that if we de�ne the trend component simply as a
linear trend, the �gure suggest only three basic periods. From 1947 to 1965 real
GDP was below trend, from 1966 to 1982 (or 1991) it was above trend, and then
it fell below trend again. According to this, the postwar US economy only had
two recessions and one expansion. This seems unreasonable and is due to the
fact that by de�ning the trend they way we have we load everything in the data
this is not growing at a constant rate into the business cycle. More medium term
changes in the growth rate are attributed as business cycle �uctuations. While,
as we argued above the division in trend and �uctuations is always somewhat
arbitrary, most business cycle researchers and practitioners take the view that
the growth trend should be de�ned more �exibly, so that the business cycle
component only captures �uctuations at the three to eight year frequency.
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Figure 2.2: Deviations of Real GDP from Linear Trend, 1947-2004

So in practice most business cycle researchers measure business cycle �uctu-
ations using one of three statistics: a) growth rates of real GDP, b) the cyclical
component of Hodrick-Prescott �ltered data, c) the data component of the ap-
propriate frequency of a band pass �lter. We will discuss the �rst two of these
methods, and only brie�y mention the third, because its understanding requires
a discussion of spectral methods which you may know if you studied physics or
a particular area of �nance, but which I do not want to teach in this class.

Figure 2.3 plots growth rates of real GDP for the US. Remember that even
though the data frequency is quarterly, these are growth rates for yearly real
GDP. The average growth rate over the sample period is 3; 3%: As a side remark,
about one third of this growth is due to population and thus labor force growth,
and two thirds are due to higher real GDP per capita. Note that if the log of
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Figure 2.3: Growth Rates of Real GDP for the US, 1947-2004

real GDP would really follow exactly a linear trend, then

log(Yt) = �+ g(t� 1947)

and thus the growth rates would be given by

gY (t� 1; t) =
Yt � Yt�1
Yt�1

� log
�
Yt � Yt�1
Yt�1

+ 1

�
= log

�
Yt
Yt�1

�
= log(Yt)� log(Yt�1)

= �+ g(t� 1947)� �� g(t� 1� 1947) = g

that is, then the plot above would look like a straight line equal to the average
growth rate of 3; 3%: Note however that since the actual data do not follow this
constant growth path exactly, plotting growth rates and plotting the residuals
of a linear egression does not result in the same plot shifted by 3; 3% upward
(compare Figure 2.3 with the trend line at 3; 3% and Figure 2.2). Also note
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that, when dealing with yt = log(Yt); computing the growth rate

gY (t� 1; t) = log(Yt)� log(Yt�1) = yt � yt�1

amounts to plotting the data in deviations from its value in the previous quarter.
Thus e¤ectively all variations of the data longer than one quarter are �ltered out
by this procedure, leaving only the very highest frequency �uctuations behind.
This is why the plot looks very �jumpy�, and observations in successive quarters
not very correlated. We will document this fact more precisely below.
While the popular discussion mostly uses growth rates to talk about the

state of the business cycle, academic economists tend to separate growth and
cycle components of the data by applying a �lter to the data. In fact, specifying
the deterministic constant growth trend above and interpreting the deviations
as cycle was nothing else than applying one such, fairly heuristic �lter to the
data. One �lter that has enjoyed widespread popularity is the so-called Hodrick-
Prescott �lter, or HP-�lter, for short. The goal of the �lter is as before : specify
a growth trend such that the deviations from that trend can be interpreted as
business cycle �uctuations. Let us describe this �lter in more detail and try
to interpret what it does. As always we want to decompose the raw data,
log(Yt) into a growth trend ytrendt = log(Y trendt ) and a cyclical component
yt = log(Y

cycle
t ) such that

log(Yt) = log(Y trendt ) + log(Y cyclet )

yt = log(Yt)� ytrendt

Of course the key question is how to pick yt and ytrendt from the data? The HP-
�lter proposes to make this decomposition by solving the following minimization
problem

min
fyt;ytrendt g

TX
t=1

(yt)
2
+ �

TX
t=1

�
(ytrendt+1 � ytrendt )� (ytrendt � ytrendt�1 )

�2
(2.2)

subject to

yt + y
trend
t = log(Yt) (2.3)

where T is the last period of the data. Note that we are given the data
flog(Yt)gTt=0, so the right hand side of 2.3 is a known and given number, for
each time period. Implicit in this minimization problem is the following trade-
o¤ in choosing the trend. We may want the trend component to be a smooth
function, but we also may want to make the trend component track the actual
data to some degree, in order to capture also some �uctuations in the data that
are of lower frequency than business cycles. These two considerations are traded
o¤ by the parameter �: If � is big, we want to make the terms�

(ytrendt+1 � ytrendt )� (ytrendt � ytrendt�1 )
�2
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small. But the term

(ytrendt+1 � ytrendt )� (ytrendt � ytrendt�1 )

=
�
log(Y trendt+1 )� log(Y trendt )

�
�
�
log(Y trendt )� log(Y trendt�1 )

�
= gY trend(t; t+ 1)� gY trend(t� 1; t)

is nothing else but the change in the growth rate of the trend component. Thus
a high � makes it optimal to have a trend component with fairly constant slope.
In the extreme as � ! 1; the weight on the second term is so big that it is
optimal to set this term to 0 for all time periods, that is,

gY trend(t; t+ 1)� gY trend(t� 1; t) = 0

gY trend(t; t+ 1) = gY trend(t� 1; t) = g

and thus

ytrendt � ytrendt�1 = g

ytrendt = ytrendt�1 + g

for all time periods t: But this is nothing else but our constant growth linear
trend that we started with. This is, the HP-�lter has the linear trend as a
special case.
Now consider the other extreme, in which we value a lot the ability of the

trend to follow the real data. Suppose we set � = 0; then the objective function
to minimize becomes

min
fyt;ytrendt g

TX
t=1

(yt)
2 subject to yt + ytrendt = log(Yt)

or substituting in for yt

min
fytrendt g

TX
t=1

�
log(Yt)� ytrendt

�2
and the solution evidently is

ytrendt = log(Yt)

that is, the trend is equal to the actual data series and the deviations from
the trend, our business cycle �uctuations, are identically equal to zero. These
extremes show that we want to pick a � bigger than zero (otherwise there are
no business cycle �uctuations and all of the data are due to the long run trend)
and smaller than 1 (so that the trend picks up some medium run variation in
addition to long run growth and does not leave everything but the longest run
movements to the �uctuations part).
Thus which � to choose must be guided by our objective of �ltering out

business cycle �uctuations, that is, �uctuations in the data with frequency of
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between three to �ve years. Which choice of � accomplishes this depends cru-
cially on the frequency of the data; for quarterly data a value of � = 1600 is
commonly used, which loads into the trend component �uctuations that occur
at frequencies of roughly eight years or longer. Note that for any � 2 (0;1) it
is not completely straightforward to solve the minimization problem associated
with the HP-�lter. But luckily there exists pre-programed computer code in
just about any software package to do this.
Figure 2.4 shows the trend component of the data, derived from the HP-

�lter with a smoothing parameter � = 1600: That is, the �gure plots ytrendt

against time. We observe that, in contrast to a simply constant growth trend
the HP-trend captures some of the medium frequency variation of the data,
which was the goal of applying the HP-�lter in the �rst place. But the HP
trend component is still much smoother than the data themselves.
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Figure 2.4: Trend Component of HP-Filtered Real GDP for the US, 1947-2004

Our true object of interest is the cyclical component that comes out of the
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HP �ltering Figure 2.5 displays the business cycle component of the HP-�ltered
data, yt: As in Figures 2.3 and 2.2 this �gure shows that the cyclical variation
in real GDP can be sizeable, up to 4�6% in both directions from trend. Clearly
visible are the mid-seventies and early eighties recessions, both partially due to
the two oil price shocks, the recession of the early 90�s that cost George W.
Bush�s dad his job and the fairly mild (by historical standard) recent recession
in 2001.
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Figure 2.5: Cyclical Component of HP-Filtered Real GDP for the US, 1947-2004

But now we want to proceed with a more systematic collection of business
cycle facts. We �rst focus on our main variable of interest, real GDP. In later
chapters, once we enrich our benchmark model with labor supply and other
realistic features, we will augment these facts with facts about other variables
of interest.
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Variable Mean St. Dv. A(1) A(2) A(3) A(4) A(5) min max %(>0) %(>0,033)
Growth Rate 3:3% 2; 6% 0; 83 0; 54 0; 21 �0; 09 �0; 20 �3; 1% 12; 6% 88; 6% 54; 0%
HP Filter 0% 1:7% 0; 84 0; 60 0; 32 0; 08 �0; 10 �6; 2% 3; 8% 53; 9% N=A

Table 2.1: Cyclical Behavior of Real GDP, US, 1947-2004

2.2 Basic Facts

Now that we have discussed how to be measure business cycle facts, let us
document the main regularities of business cycles. Sometimes the resulting facts
are called stylized facts, that is, facts one gets from (sophisticatedly) eyeballing
the data. These facts will be the targets of comparison for our quantitative
models to be constructed in the next part of this class. The goal of the models
is to generate business cycles of realistic magnitude, and to explain what brings
them about. In order to do so, we need empirical benchmark facts.

Table 2.1 summarizes the main stylized facts or quarterly real GDP for the
US between 1947 and 2004, both when using growth rates and when using the
cyclical component of the HP-�ltered series. The mean and standard deviation
of a time series fxtgTt=0 are de�ned as

mean(x) =
1

T

TX
t=0

xt

std(x) =

 
1

T

TX
t=0

(xt �mean(x))2
! 1

2

The autocorrelations are de�ned as follows

A(i) = corr(xt; xt�1) =
1

T�i
P
t(xt �mean(x))(xt�i �mean(x))

std(x) � std(x)

and measure how persistent a time series is. For time series with high �rst order
autocorrelation tomorrow�s value is likely to be of similar magnitude as today�s
value. Finally the table gives the maximum and minimum of the time series and
the fraction of observations above zero, and, for the growth rate, the fraction of
observations bigger than its mean, 3; 3%:
We make the following observations. First, besides the fact that the mean

growth rate is 3; 3% whereas the cyclical component of the HP-�ltered series
has a mean of 0; the main stylized facts derived from taking growth rates and
HP-�ltering are about the same. They are:

1. Real GDP has a volatility of about 2% around trend, or more concretely,
1; 7% when considering the HP-�ltered series.



16 CHAPTER 2. BASIC BUSINESS CYCLE FACTS

2. The cyclical component of real GDP is highly persistent (that is, positive
deviations are followed with high likelihood with positive deviations). The
autocorrelation declines with the order and turns negative for the �fth
order (that is if real GDP is above trend this quarter, it is more likely to
be below than above trend in �ve quarters from now).

3. Positive deviations from trend are more likely than negative deviations
from trend. This suggests that recessions are short but sharp, whereas
expansions are long but gradual.

4. It is rare that the growth rate of real GDP actually becomes negative, at
least for the US between 1947 and 2004.

It is an instructive exercise (that you will do with Philip�s help) to carry out
the same empirical exercise described in these notes for an alternative country
of your choice. All you need is a su¢ ciently long time series for real GDP for
a country (preferably seasonably adjusted), a little knowledge of MATLAB (or
some equivalent software package) and a pre-programed HP �lter subroutine
(which for MATLAB I will give you). But now we want to start constructing
our theoretical model that we will use to explain existence and magnitude of
the business cycles documented above.



Part II

The Real Business Cycle
(RBC) Model and Its

Extensions
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In this part we describe the basic real business cycle model. We start with
its simplest version, in which endogenous labor supply and technology shocks
are absent. That version of the model is also known in the literature as the
Cass-Koopmanns neoclassical growth model. After setting up the model we will
argue that the equilibrium of the model can be solved for by instead solving the
maximization problem of a �ctitious benevolent social planner (and we will argue
why this is much easier than solving for the equilibrium directly). We then will
derive and study the basic optimality conditions from this model. We will start
with the explicit solution of the model by carrying out a steady state analysis,
that is, we look for a special equilibrium in which the economic variables of
interest (GDP, consumption, investment, the capital stock) are constant over
time. Since this steady state is also the starting point of our general discussion of
the solution of the model, it is a natural starting point for the analysis. We then
discuss how to solve for the entire dynamic behavior of the model, which requires
some mathematical and/or computational tricks. Then we quickly address how
we can, in a straightforward manner and without further complications, add
technological progress and population growth to the model. This will conclude
the basic theoretical discussion of the benchmark model.
In order to make the model into an operational tool for business cycle analysis

we have to choose parameter values that specify the elements of the model
(that is, the utility function of the household and the production technology
of the �rms). The rigorous method for doing so within the RBC tradition
is called calibration (if time permits I will transgress into a discussion of the
main di¤erences and relative advantages of calibration and formal econometric
estimation). After parameterizing the model we are ready to use it. However,
we will see that the benchmark model by construction does not deliver business
cycles nor �uctuations of employment over time. In order to rectify this we
in turn introduce a labor supply decision and stochastic (random) productivity
shocks into the model.
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Chapter 3

Set-Up of the Basic Model

In the benchmark model there are two types of economic actors, private house-
holds and �rms. Time is discrete and the economy lasts for T periods, where
T =1 (the economy lasts forever) is allowed. A typical time period is denoted
by t: We now describe in turn private households and �rms in this economy.

3.1 Households

Households live for T periods. All households are completely identical, and
for simplicity we normalize the total number of households to 1: While this
spares us to divide all macroeconomic variables by the number of people to
obtain per-capita values, you should think about the economy being populated
by many households that just happen to sum to 1: Where the assumption of
many households is crucial is that it allows us to treat households as behaving
competitively, that is, households believe that their actions do not a¤ect market
prices in the economy (because they have it in their head that there are so many
households in the economy that weight in the population is negligibly small).
In the simple version of the model households simply decide in each period how
much of their income to consume, and how much to save for tomorrow. We
assume that per period households can work a total of 1 unit of time, and since
they don�t care about leisure they do work all the time.
Let by ct denote the household�s consumption at time t:We assume that the

household has a utility function of the form

U(c0; c1; : : : ; cT ) = u(c0) + �u(c1) + �
2u(c2) + : : :+ �

Tu(cT )

=
TX
t=0

�tu(ct)

where � 2 (0; 1) is the time discount factor. The fact that we assume � < 1
indicates that our consumer is impatient; she derives less utility from the same
consumption level if that consumption occurs later, rather than earlier in life.

21
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Sometime we will also measure the degree of the household�s impatience by the
time discount rate �: The time discount rate and the time discount factor are
related via the equation

� =
1

1 + �

We will make assumptions on the period utility function u later; for now we
assume that is is at least twice di¤erentiable, strictly increasing and strictly
concave (that is, u0(c) > 0 and u00(c) < 0 for all c). In applications we will often
assume that the utility function is logarithmic, that is, u(c) = log(c); where log
denotes the natural logarithm. This assumption is made partially because it
gives us simple solutions, partly because the solution we will get has some very
plausible properties.
Now that we know what people like (consumption in all periods of their life),

we have to discuss what people can a¤ord to buy. Besides working one unit of
time per period and earning a wage wt; households are born with initial assets
a0 > 0: Their budget constraint in period t reads as

ct + at+1 = wt + (1 + rt)at

This equation tells us several things. First, we assume that the numeraire good
is the consumption good, and normalize its price to 1: Consequently assets are
real assets, that is, they pay out in terms of the consumption good, rather
than in terms of money (the term money will be largely absent in this class).
Similarly, wt is the real wage and rt is the real interest rate. The equation says
that expenditures for consumption plus expenditures for purchases of assets that
pay out in period t+1; at+1; have to equal labor income wt �1 plus the principal
plus interest of assets purchased yesterday and coming due today, (1 + rt)at:
Another way of writing this is

ct + at+1 � at = wt + rtat

with the interpretation that labor income wt and capital income rtat are spent
on consumption ct and savings at+1 � at (which is nothing else but the change
in the asset position of the household between today and tomorrow). Finally
note that we allow the household to purchase only one asset, a real asset with
maturity of one period. In this simple model the introduction of other, more
complicated assets would not change matters (i.e. the consumption allocation),
but we leave the discussion of this to the many excellent asset pricing classes
at Frankfurt). The household starts with assets a0 that are given exogenously
(the household is simply born with it). But what about the end of life. If
we allow the household to die in debt, she would certainly decide to do so; in
fact, without any limit the household optimization problem has no solution as
the household would run up in�nitely high debt. We assume instead that the
household cannot die in debt, that is, we require aT+1 � 0: Since there is no
point in leaving any assets unspent (the household is sel�sh and does not care
about potential descendants, plus she knows exactly when she is dying), we
immediately have aT+1 = 0: If the household lives forever, that is, T =1; then
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the terminal condition for assets is slightly more complicated; one has to rule
out that household debt does not grow to fast far in the future.1 We will skip
the details here; if interested, please refer to my Ph.D. lecture notes on the same
issue.
This leaves us with the following household maximization problem: given

a time path of wages and interest rates fwt; rtgTt=0 and initial assets a0; the
household solves

max
fct;at+1gTt=0

TX
t=0

�tu(ct)

subject to

ct + at+1 = wt + (1 + rt)at

ct � 0

aT+1 = 0

For future reference let us derive the necessary (and if T is �nite, these are also
the su¢ cient) condition for an optimal consumption choice. First let us ignore
the non-negativity constraints on consumption and the terminal condition on
assets (the latter one we will use below, and it is easy to make assumptions on the
utility function that guarantees ct > 0 for all periods, such as limc!0 u

0(c) =1).
Setting up the Lagrangian, with �t denoting the Lagrange multiplier on the
period t budget constraint gives

L =

TX
t=0

�tu(ct) +

TX
t=0

�t (wt + (1 + rt)at � ct � at+1)

Taking �rst order conditions with respect to ct with respect to ct+1 and with
respect to at+1 and setting them to zero yields

�tu0(ct) = �t

�t+1u0(ct+1) = �t+1

�t = �t+1(1 + rt+1)

Combining these equations yields the standard intertemporal consumption Euler
equation

u0(ct) = �(1 + rt+1)u
0(ct+1) (3.1)

This equation has the standard interpretation that if the household chooses
consumption optimally, she exactly equates the cost from saving one more unit
today (the loss of u0(ct) utils) to the bene�t (saving one more unit of con-
sumption today gives 1 + rt+1 more units of consumption tomorrow, and thus
(1 + rt+1) � �u0(ct+1) more utils).

1A condition to rule this out is sometimes called a no Ponzi condition, in honor of a Boston
business man and criminal that e¤ectively tied to borrow without bounds. His so-called Ponzi
scheme eventually exploded.
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We will often be interested in a situation where the economic variables of
interest, here consumption and the interest rate, are constant over time, that
is, ct = ct+1 = c and rt+1 = r: Such a situation is often called a steady state.
From the previous equation we see right away that a steady state requires

u0(c) = �(1 + r)u0(c)

or
1 = �(1 + r)

That is, in a steady state the time discount rate � necessarily has to equal
the interest rate, � = r; because only at that interest rate will households �nd
it optimal to set consumption constant over time (what happens if � > r or
� < r?). Of course the reverse is also true: if rt = � for all time periods, it
follows that consumption is constant over time.
Finally we can characterize the entire dynamics of consumption, savings

and asset holdings of the household, even though we may need assumptions,
mathematical tricks or a computer to solve for them explicitly. Solving the
budget constraint for consumption yields

ct = wt + (1 + rt)at � at+1
ct+1 = wt+1 + (1 + rt+1)at+1 � at+2

Inserting these into equation (3:1) yields

u0(wt + (1 + rt)at � at+1) = �(1 + rt+1)u
0(wt+1 + (1 + rt+1)at+1 � at+2) (3.2)

Remember that the household takes wages and interest rates fwt; rtgTt=0 as given
numbers; thus the only choice variables in this equation are at; at+1; at+2:Math-
ematically, this is a second order di¤erence equation (unfortunately a nonlinear
one in general). But we have an initial condition (since a0 is exogenously given)
and a terminal condition, aT+1 = 0; so in principle we can solve this second
order di¤erence equation (in practice, as mentioned above, we either pick the
utility function and thus u0 well), rely on some mathematical approximations
or switch on a computer and program an algorithm that solves this di¤erence
equation boundary problem. We will return to this problem below.

3.2 Firms

As with households we assume that all �rms are identical and normalize the
number of �rms to 1: Again we still assume that �rms believe to be so small
that their hiring decisions do not a¤ect the wages they have to pay their workers
and the rental price they have to pay for their capital. The representative �rm in
each period produces the consumption good households like to eat. Let yt denote
the output of the �rm of this consumption good, and nt denote the number of
workers being hired by the �rm, and kt the amount of physical capital (machines,
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buildings) being used in production at period t: The production technology is
described by a standard neoclassical Cobb-Douglas production function

yt = Atk
�
t n

1��
t

Here At is a technology parameter that determines, for a given input, how much
output is being produced. For now we assume that At = A > 0 is constant over
time. Below we will then introduce shocks to At to generate business cycles.
The fact that these shocks are shocks to the production technology and thus
�real�shocks (as opposed to, say, monetary shocks), gives the resulting business
cycle theory its name Real Business Cycle Theory. But for now the production
technology is given by

yt = Ak�t n
1��
t

The parameter � measures the importance of the capital input in production2 ;
we will link it to the capital share of income below. In addition, when the �rm
uses kt machines in period t; a fraction � of them wear down. This process is
called depreciation. Also note that this production function exhibits constant
returns to scale: doubling both inputs results in doubled output.
The �rm hires workers at a wage wt per unit of time; for simplicity we also

assume that the �rm rents the capital it uses in the production process from
the households, rather than owning the capital stock itself. This turns out to be
an inconsequential assumption and makes our life easier when stating the �rm�s
problem. Thus from now on we identify the asset the household saves with as
the physical capital stock of the economy. Let the rental price per unit of capital
be denoted by �t: Note that because of depreciation, whenever a household rents
one machine to the �rm, she receives �t� � as e¤ective rental payment (since a
fraction � of the machine disappears in the production process and thus is not
returned back to the household). The rental rate of capital and the real interest
rate then satisfy the relation

rt = �t � �:

The �rm takes wages and rental rates of capital as given and maximizes period
by period pro�ts (there is nothing dynamic about the �rm, as it rents all inputs

2Note that � is in fact the elasticity of output with respect to the capital input. Take logs
of the production function to obtain

log(yt) = log(A) + � log(kt) + (1� �) log(nt)

and thus
d log(yt)

d log(kt)
= �:

Similarly
d log(yt)

d log(nt)
= 1� �
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period by period and sells output period by period):

max
nt;kt

(yt � wtnt � �tkt)

subject to

yt = Ak�t n
1��
t

kt; nt � 0

Again ignoring the nonnegativity constraints on inputs (given the form of the
production function, these are never binding -why?) the maximization problem
becomes

max
nt;kt

�
Ak�t n

1��
t � wtnt � �tkt

�
with �rst order conditions

wt = (1� �)A
�
kt
nt

��
�t = �A

�
kt
nt

���1
: (3.3)

That is, �rms set their inputs such that they equate the wage rate (which they
take as exogenously given) to the marginal product of labor. Likewise the rental
rate of capital is equated to the marginal product of capital. An easy calculation
shows that the pro�ts of the �rm equal

�t = Ak�t n
1��
t � wtnt � �tkt

= Ak�t n
1��
t � (1� �)A

�
kt
nt

��
nt � �A

�
kt
nt

���1
kt

= 0:

In fact, knowing this beforehand in the household problem above I never in-
cluded pro�ts of �rms in the budget constraint. Likewise I never discussed who
owns these �rms. Given that their pro�ts happen to equal zero, this is irrelevant.
Note that the zero pro�t result does not hinge on the Cobb-Douglas production
function: any constant returns to scale production function, together with price
taking behavior by �rms will deliver this result.
For the Cobb-Douglas production function it is also straightforward to com-

pute the labor share and the capital share. De�ne the labor share as that
fraction of output (GDP) that is paid as labor income, that is, the ratio of total
labor income wtnt (the product of the wage and the amount of labor used in
production) to output yt:

labor share =
wtnt
yt

A simple calculation shows that

wtnt
yt

=
(1� �)A

�
kt
nt

��
� nt

Ak�t n
1��
t

= 1� �:
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Similarly, capital income is given by the product of the rental rate of capital
and the total amount of capital used in production, and thus the capital share
equals

capital share =
�tkt
yt

= �:

Thus, if the production technology is given by a Cobb-Douglas production func-
tion, the labor share and capital share are constant over time and pinned down
by the parameter �: Since we can measure capital and labor shares in the data,
this relationship will be helpful in choosing a number for the parameter � when
we will parameterize the economy.

3.3 Aggregate Resource Constraint

Total output produced in this economy is given by yt = Ak�t n
1��
t : This output

can be used for two purposes, for consumption and for investment (we ignore,
for the moment, the government sector and assume that our economy is a closed
economy). Both of these assumptions can be relaxed, but this leads to additional
complications, as we will see below. Private consumption was denoted by ct
above (remember, there is only one household in this economy). Let investment
be denoted by it: Then the resource constraint in this economy becomes

ct + it = yt

But now let�s investigate investment a bit further. In the data investment takes
two forms: a) the replacement of depreciated capital, replacement investment
or depreciation, and b) net investment, that is, the net increase of the existing
capital stock. In our model, depreciation is given by �kt; since by assumption
a fraction � of the capital stock get broken in production. The net increase in
the capital stock between today and tomorrow, on the other hand, is given by
kt+1 � kt; so that total investment equals

it = �kt + kt+1 � kt
= kt+1 � (1� �)kt

Thus the aggregate resource constraint becomes

ct + kt+1 � (1� �)kt = Ak�t n
1��
t (3.4)

3.4 Competitive Equilibrium

Our ultimate goal is to study how allocations (consumption, investment output,
labor etc.) in the model compare to the data. But as we have seen, these
allocations are chosen by households and �rms, taking prices as given. Now we
have to �gure out how prices (that is, wages and interest rates) are determined.
We have assumed above that all agents in thee economy behave competitively,
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that is, take prices as given. So it is natural to have prices be determined in what
is called a competitive equilibrium. In a competitive equilibrium households
and �rms maximize their objective functions, subject to their constraints, and
markets clear. The markets in this economy consists of a market for labor,
a market for the rental of capital, and a market for goods. In a competitive
equilibrium all these markets have to clear in all periods.
Let us start with the goods market. The supply of goods by �rms equals

its output yt (it is never optimal for the �rm to store output if there is any
cost associated with it, so we�ll ignore the possibilities of inventories for the
time being). Demand in the goods market is given by consumption demand
and investment demand of households, ct + it: Thus the market clearing in the
goods markets boils down exactly to equation (3:4): The labor market clearing
condition simply states that the demand for labor by our representative �rm,
nt; equals the supply of labor by our representative household. But we have
assumed above that the household can and does supply one unit of labor in
each period, so that the labor market clearing condition reads as

nt = 1

Finally we have to state the equilibrium condition for the capital rental market.
Firms�demand for capital rentals is given by kt: The household�s asset holdings
at the beginning of period t are denoted by at: But physical capital is the only
asset in this economy, so the assets held by households have to equal the capital
that the �rm desires to rent, or

at = kt

All these equilibrium conditions, of course, have to hold for all periods t =
0; : : : ; T: But how does an equilibrium in all these markets come about? That�s
the role of prices (wages and interest rates): they adjust such that markets clear.
We now can de�ne a competitive equilibrium as follows:

De�nition 1 Given initial assets a0; a competitive equilibrium are allocations
for the representative household, fct; at+1gTt=0; allocations for the representative
�rm, fkt; ntgTt=0 and prices frt; �t; wtgTt=0 such that

1. Given frt; wtgTt=0; the household allocation solves the household problem

max
fct;at+1gTt=0

TX
t=0

�tu(ct)

subject to

ct + at+1 = wt + (1 + rt)at

ct � 0

aT+1 = 0
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2. Given f�t; wtgTt=0; with �t = rt � � for all t = 0; : : : ; T the �rm allocation
solves the �rm problem

max
nt;kt

(yt � wtnt � �tkt)

subject to

yt = Ak�t n
1��
t

kt; nt � 0

3. Markets clear: for all t = 0; : : : ; T

ct + kt+1 � (1� �)kt = Ak�t n
1��
t

nt = 1

at = kt

Note that the de�nition of equilibrium is completely silent about how the
equilibrium prices come about; the de�nition simply states that at the equilib-
rium prices markets clear. Also note something surprising: there are 3(T + 1)
market clearing conditions (there are T + 1 time periods and 3 markets open
per period), but we have only 2(T + 1) prices that can be used to bring about
market clearing (wages wt and interest rates rt for each period t = 0; : : : ; T ;
note that �t does not count, since it always equals �t + rt � �): But it turns
out that whenever, in a given period, two markets clear, then the third mar-
ket clears automatically. In fact, this is an important general result in General
Equilibrium Theory (as the research �eld that deals with competitive equilibria
and their properties is called). The result is commonly referred to as Walras�
law.

Theorem 2 Suppose that at prices frt; �t; wtgTt=0; allocations fct; at+1gTt=0 and
fkt; ntgTt=0 solve the household problem and the �rm problem and suppose that
all periods t the labor and the asset markets clear, nt = 1 and at = kt for all t:
Then the goods market clears, for all t:

Proof. Since the allocation solves the household problem, it has to satisfy the
household budget constraint

ct + at+1 = wt + (1 + rt)at

By market clearing in the asset market, at = kt and at+1 = kt+1; and thus

ct + kt+1 = wt + (1 + rt)kt

or
ct + kt+1 � kt = wt + rtkt

But since rt = �t � �; we have

ct + kt+1 � kt = wt + (�t � �)kt
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or

ct + kt+1 � (1� �)kt = wt + �tkt

= 1 � wt + �tkt
= ntwt + �tkt (3.5)

where the last equality uses the labor market clearing condition nt = 1: But
from the �rst order conditions of the �rms� problem (remember we assumed
that the allocation solves the �rms problem)

wt = (1� �)A
�
kt
nt

��
�t = �A

�
kt
nt

���1
and thus

wtnt + �tkt = (1� �)A
�
kt
nt

��
nt + �A

�
kt
nt

���1
kt

= (1� �)Ak�t n1��t + �Ak�t n
1��
t

= Ak�t n
1��
t : (3.6)

Combining (3:5) and (3:6) yields

ct + kt+1 � (1� �)kt = Ak�t n
1��
t

that is, the goods market clearing condition.

3.5 Characterization of Equilibrium

What we want to do with this model is to characterize equilibrium allocations
and assess how well the model describes reality. We already found the optimality
condition of the household as

u0(wt + (1 + rt)at � at+1) = �(1 + rt+1)u
0(wt+1 + (1 + rt+1)at+1 � at+2)

Now we can make use of further optimality conditions to simplify matters fur-
ther. First, we realize that from the asset market clearing condition we have
kt = at; kt+1 = at+1 and kt+2 = at+2: Then we know that

wt = (1� �)A
�
kt
nt

��
= (1� �)Ak�t

rt = �t � � = �A (kt)
��1 � �

and similar results hold for wt+1 and rt+1: Inserting all this in the Euler equation
of the household yields

u0((1� �)Ak�t + (1 + �A (kt)
��1 � �)kt � kt+1)

= �(1 + �A (kt+1)
��1 � �)u0((1� �)Ak�t+1 + (1 + �A (kt+1)

��1 � �)kt+1 � kt+2)
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or

u0(Ak�t +(1��)kt�kt+1) = �(1+�A (kt+1)
��1��)u0(Ak�t+1+(1��)kt+1�kt+2)

(3.7)
Arguably this is a mess, but this equation has as arguments only (kt; kt+1; kt+2).
All the remaining elements in this equation are the parameters (�;A; �; �) and
of course the derivative of the utility function that needs to be speci�ed (and by
doing so we may need additional parameters). But mathematically speaking,
this now really is simply a second order di¤erence equation (there are no prices
there anymore). What is more, we have an initial condition k0 = a0; equal
to some pre-speci�ed number, and kT+1 = aT+1 = 0: Below we will study
techniques (mostly numerical in nature) to solve an equation like this.
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Chapter 4

Social Planner Problem and
Competitive Equilibrium

In this section we will show something that, at �rst sight, should be fairly sur-
prising. Namely that we can solve for the allocation of a competitive equilibrium
by solving the maximization problem of a benevolent social planner. In fact,
this is a very general principle that often applies (and as such is called a the-
orem, in fact, two theorems, namely the �rst and second fundamental welfare
theorems of general equilibrium). Envision a social planner that can tell agents
in the economy (households, �rms) what to do, i.e. how much to consume, how
much to work, how much to produce etc. The social planner is benevolent, that
is, likes the households in the economy and thus maximizes their lifetime utility
function. The only constraints the social planner faces are the physical resource
constraints of the economy (even the social planner cannot make consumption
out of nothing).

4.1 The Social Planner Problem

The problem of the social planner is given by

max
fct;kt+1;ntgTt=0

TX
t=0

�tu(ct)

subject to

ct + kt+1 � (1� �)kt = Ak�t n
1��
t

ct � 0; 0 � nt � 1
k0 > 0 given

We make two simple observations before characterizing the optimal solution to
the social planner problem. First, households only value consumption in their
utility function, and don�t mind working. Since more work means higher output,
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and thus higher consumption today, or via higher investment tomorrow, it is
always optimal to set nt = 1: Second, we have not imposed any constraint on
kt+1; but evidently kt+1 < 0 can never happen since then production is not
well-de�ned (try to raise a negative number to some power � 2 (0; 1) and see
what your pocket calculator tells you). In addition, even kt+1 = 0 can be ruled
out under fairly mild condition on the utility function, since kt+1 = 0 means
that output in period t+1 is zero, thus consumption in that period is zero and
kt+2 = 0 and so forth. Thus it is never optimal to set kt+1 = 0 for any time
period, unless the household does not mind too much consuming 0 (in all our
applications this will never happen). Exploiting these facts the social planners
problem becomes

max
fct;kt+1gTt=0

TX
t=0

�tu(ct)

subject to

ct + kt+1 � (1� �)kt = Ak�t

ct � 0 and k0 > 0 given

Note that this maximization problem is an order of magnitude less complex
than solving for a competitive equilibrium, because in the later we have to solve
maximization problems of households and �rms and �nd equilibrium prices that
lead to market clearing. The social planner problem is a simple maximization
problem, although that problem still has many choice variables, namely 2(T+1);
which is a big number as T becomes large. Thus it would be really useful to
know that by solving the social planner problem we have in fact also found the
competitive equilibrium.

4.2 Characterization of Solution

The Lagrangian, ignoring the non-negativity constraints for consumption (which
will not be binding under the appropriate conditions on the utility function), is
given by

L =
TX
t=0

�tu(ct) +
TX
t=0

�t [Ak
�
t � ct � kt+1 + (1� �)kt]

The �rst order conditions, set to 0; are

@L

@ct
= �tu0(ct)� �t = 0

@L

@ct+1
= �t+1u0(ct+1)� �t+1 = 0

@L

@kt+1
= ��t + �t+1

�
�Ak��1t+1 + (1� �)

�
= 0
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Rewriting these conditions yields

�tu0(ct) = �t

�t+1u0(ct+1) = �t+1

�t+1
�
�Ak��1t+1 + (1� �)

�
= �t

and thus

�tu0(ct) = �t = �t+1
�
�Ak��1t+1 + (1� �)

�
= �t+1u0(ct+1)

�
�Ak��1t+1 + (1� �)

�
u0(ct) = �u0(ct+1)

�
�Ak��1t+1 + (1� �)

�
(4.1)

which is, of course, the intertemporal Euler equation. The social planner equates
the marginal rate of substitution of the representative household between con-
sumption today and tomorrow, u0(ct)

�u0(ct+1)
to the the marginal rate of transforma-

tion between today and tomorrow. Letting the household consume one unit of
consumption less today allows for one more unit investment and thus one more
unit of capital tomorrow. But this additional unit of capital yields additional
production equal to the marginal product of capital, �Ak�t+1; and after produc-
tion 1�� units of the capital are still left over. Thus the marginal rate of trans-
formation between consumption today and tomorrow equals �Ak�t+1 + (1� �):
Making use of the resource constraints

ct = Ak�t � kt+1 + (1� �)kt
ct+1 = Ak�t+1 � kt+2 + (1� �)kt+1

the Euler equation becomes

u0(Ak�t �kt+1+(1��)kt) = �u0(Ak�t+1�kt+2+(1��)kt+1)
�
�Ak��1t+1 + (1� �)

�
(4.2)

Comparing equations (4:2) and (3:7) we see that they are exactly the same. This
observation will be the basis of our proof of the two welfare theorems. Note again
that this is a second order di¤erence equation, and we have an initial condition,
because k0 is given to us. As long as T <1 we also have a terminal condition,
since it is evidently optimal for the planner to set kT+1 = 0 (why invest into
capital that is productive in the period after the world ends). If T =1 things
are a bit more complicated as there is no last period.

4.3 The Welfare Theorems

Now we can state the two fundamental theorems of welfare economics,. We will
restrict the proof to the case that T < 1 since this avoids some tricky issues
with in�nite-dimensional optimization (if T = 1; the social planner as well
as the household in the competitive equilibrium has to choose in�nitely many
consumption levels and capital stocks).
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Theorem 3 (First Welfare Theorem) Suppose we have a competitive equilib-
rium with allocation fct; kt+1gTt=0: Then the allocation is socially optimal (in the
sense that it solves the social planner problem).

Proof. Since fct; kt+1gTt=0 is part of a competitive equilibrium, it has to satisfy
the necessary conditions for household and �rm optimality. We showed that
this implies that the allocation solves the Euler equation (3:7): But then the al-
location satis�es the necessary and su¢ cient conditions (why are the conditions
su¢ cient?) of the social planners problem (4:2):

Theorem 4 (Second Welfare Theorem) Suppose an allocation fct; kt+1gTt=0 solves
the social planners problem and hence is socially optimal. Then there exist prices
frt; �t; wtgTt=0 that, together with the allocation fct; kt+1gTt=0 and fnt; at+1gTt=0;
where nt + 1 and at+1 = kt+1 for all t; forms a competitive equilibrium.

Proof. The proof is by construction. First we note that all market clearing
conditions for a competitive equilibrium are satis�ed (the labor market and
asset market equilibrium conditions by construction, the goods market clearing
condition since the allocation, by assumption, solves the social planner problem
and thus satis�es the resource feasibility condition, for all t: Now construct
prices as functions of the allocation, as follows

wt = (1� �)A
�
kt
nt

��
rt = �A

�
kt
nt

���1
� �

�t = rt + �

It remains to be shown that at these prices the allocation solves the �rms�and
households�maximization problem. Looking at the �rms �rst order conditions,
they are obviously satis�ed. And the necessary and su¢ cient conditions for
the households�maximization problem were shown to boil down to (3:7); which
the allocation satis�es, since it solves the social planner problem and hence the
conditions (4:2):
These two results come in handy, because they allow us to solve the much

simpler social planner problem and be sure to have automatically solved for the
competitive equilibrium, the ultimate object of interest, also.

4.4 Appendix: More Rigorous Math

More speci�cally, here is how the logic works in precise mathematical terms.

1. Suppose the social planner problem has a unique solution (since it is a
�nite-dimensional maximization with a strictly concave objective function
and a convex constraint set). The second theorem tells us that we can
make this solution a competitive equilibrium, and the proof of the second
theorem even tells us how to construct the prices.
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2. Can there be another competitive equilibrium allocation? No, since the
�rst theorem tells us that that other equilibrium allocation would also be
a solution to the social planner problem, contradicting the fact that this
problem has a unique solution.

The last steps also should indicate to you that the case T = 1 is harder
to deal with mainly because arguing for uniqueness of the solution to the social
planners problem and for the su¢ ciency of the Euler equations for optimality
is harder if the problem is in�nite-dimensional.
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Chapter 5

Steady State Analysis

A steady state is a competitive equilibrium or a solution to the social planners
problem where all the variables are constant over time. Let (c�; k�) denote the
steady state consumption level and capital stock. Then, if the economy starts
with the steady state capital stock k0 = k�, it never leaves that steady state.
And even if it starts at some k0 6= k�; it may over time approach the steady
state (and once it hits it, of course it never leaves again. We will see below that
the steady state may also an important starting point of the dynamic analysis
of the model; if there is hope that the solution of the model never gets too far
away from the steady state, one can linearize the dynamic system around the
steady state and hope to obtain a good approximation to the optimal decisions.
More on this below.

5.1 Characterization of the Steady State

Since the previous section showed that we can interchangeably analyze socially
optimal and equilibrium allocations, let us focus on equation (4:2); or equiva-
lently, equation (4:1)

u0(ct) = �u0(ct+1)
�
�Ak��1t+1 + (1� �)

�
(5.1)

In the steady state we require ct = ct+1 = c� and kt+1 = k�: But then u0(ct) =
u0(ct+1) and thus

1 = �
h
aA (k�)

��1
+ (1� �)

i
or, remembering � + 1

1+� ;

� = aA (k�)
��1 � �

�+ � = aA (k�)
��1 (5.2)

This rule for choosing the steady state capital stock is sometimes called the
modi�ed golden rule: the optimal steady state capital stock is such that the
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associated marginal product of capital equals the depreciation rate plus the
time discount rate. We will see very soon why this is called the modi�ed golden
rule. Obviously we can solve for the steady state capital stock explicitly as

k� =

�
�+ �

aA

� 1
��1

=

�
�A

�+ �

� 1
1��

That is, the optimal steady state capital stock is the higher the more productive
the production technology (that is, the higher A); the more important capital
is relative to labor in the production process (the higher is �); the lower is
the depreciation rate of capital (the lower �) and the lower the impatience
of individuals (the lower �). Also note that the steady state capital stock is
completely independent of the utility function of the household (as long as it is
strictly concave, why?)
The steady state consumption level can now be determined from the resource

constraint (3:4)
ct + kt+1 � (1� �)kt = Ak�t

In steady state this becomes

c� + �k� = A (k�)
�

c� = A (k�)
� � �k�

that is, steady state consumption equals steady state output minus depreciation,
since in the steady state capital is constant and thus net investment kt+1 � kt
is equal to 0:

5.2 Golden Rule and Modi�ed Golden Rule

Now we can also see why the modi�ed golden rule is called that way. In the
steady state, consumption equals

c = A (k)
� � �k:

Let kg denote the (traditional) golden rule capital stock that maximizes steady
state consumption, i.e. the capital stock that solves

max
k

A (k)
� � �k

Taking �rst order conditions and setting to 0 yields

�A (kg)
��1

= � or (5.3)

kg =

�
�A

�

� 1
1��

(5.4)

Let cg denote the (traditional) golden rule consumption level

cg = A (kg)
� � �kg:

We have the following
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Proposition 5 The modi�ed golden rule capital stock and consumption level
are lower than the (traditional) golden rule capital stock and consumption level,
strictly so whenever � > 0 (and or course A > 0; � > 0; � > 0:

Proof. Obviously

kg =

�
�A

�

� 1
1��

� k� =

�
�A

� + �

� 1
1��

with strict inequality if � > 0: But kg is the unique capital stock that max-
imizes steady state consumption, whereas k� does not maximize steady state
consumption. Thus, evidently, cg � c�; with strict inequality if kg > k� (i.e. if
� > 0).
What is the intuition for the result? Why is the perfectly benevolent plan-

ner choosing a steady state capital and consumption level lower than the one
that would maximize steady state consumption. Note that the planners objec-
tive is to maximize lifetime utility, not lifetime consumption. And since the
household is impatient if � > 0; the planner should take this into account by
letting the household consume more today, as the expense of lower steady state
consumption in the future.
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Chapter 6

Dynamic Analysis

Now we want to analyze how the economy, from an arbitrary starting condition
k0; evolves over time. Again we exploit the welfare theorems and go for the
solution of the social planner problem directly. It is somewhat easier to do
this analysis for the case T = 1; that is, for the case in which the economy
runs forever. The reason is simple: if the economy ends at a �nite T; we know
that kT+1 = 0: On the other hand it is never optimal to have kt = 0 for any
time t � T; because otherwise consumption from that point on would have to
equal 0; which is never optimal under some fairly mild conditions on the utility
function.1 Therefore it is unlikely that in the �nite time case the economy will
settle down to a steady state with constant capital and consumption. In the
case T =1 this will happen, as we will see below.
We already know that if by coincidence we have k0 = k�; then the capital

stock would remain constant over time in the T = 1 case, so would be the
interest rate, consumption and all other variables of interest. This can be seen
from the Euler equation of the social planners problem, equation (4:2):

u0(Ak�t � kt+1 + (1� �)kt) = �u0(Ak�t+1 � kt+2 + (1� �)kt+1)
�
�Ak��1t+1 + (1� �)

�
=

u0(Ak�t+1 � kt+2 + (1� �)kt+1)
�
�Ak��1t+1 + (1� �)

�
1 + �

(6.1)

Plugging in kt = kt+1 = kt+2 = k� we see that this equation holds (simply

realize that �A(k�)��1+(1��)
1+� = 1 and that the left had side for kt = kt+1 = k�

equals the right hand side for kt+1 = kt+2 = k�), so that setting kt = k� for all
periods is a solution to the social planners problem (in fact the only solution,
since the optimal solution to the social planner problem is unique, because it is

1Besides strict concavity (i.e. u00(c) < 0) what is needed is a so-called Inada condition

lim
c!0

u0(c) =1;

that is, one assumes that at zero consumption the marginal utility from consuming the �rst
unit is really large. The utility function u(c) = log(c) satis�es this assumption.
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a maximization problem with strictly concave objective function and a convex
constraint set).
But what happens if we start with k0 6= k�? We assume that k0 > 0;

since otherwise there is no production, no consumption and no investment in
period 0 or in any period from that point on. What we are looking for is a
sequence of numbers fktg1t=1 that solves equation (6:1): This is in general hard
to do, so let�s try to simplify. The economy starts with initial capital k0 and
the social planner has to decide how much of this to let the agent consume, c0
and how much to accumulate for tomorrow, k1: But in period 1 the planner has
exactly the same problem: given the current capital stock k1; how much to let
the agent consume, c1 and how much to accumulate for tomorrow, k2: This is
in fact a general principle (which one can make very general using the general
theory of dynamic programming): we can �nd our solution fktg1t=1 by �nding
the unknown function g giving kt+1 = g(kt): If we would know this function,
then we can determine how the capital stock evolves over time by starting with
the given k0; and then

k1 = g(k0)

k2 = g(k1)

k3 = g(k2)

and so forth. Of course the challenge is to �nd this function g: There are two
approaches to do this. For some examples we can guess a particular form of g
and then verify that our guess was correct. Second, and this is a very general
approach that (almost) always works and for which the use of a computer comes
in handy, one can try to turn equation (6:1) into a linear equation, which one
then can always solve.

6.1 An Example with Analytical Solution

Suppose that the utility function is logarithmic, u(c) = log(c) (and thus u0(c) =
1
c ) and also assume that capital completely depreciates after one period, that is
� = 1: Then equation (6:1) becomes

1

Ak�t � kt+1
=

��Ak��1t+1

Ak�t+1 � kt+2
(6.2)

Remember that we look for a function g telling us how big kt+1 is, given today�s
capital stock kt: Now lets make a wild guess (maybe not so wild: let us guess
that the social planner �nds it optimal to take output Ak�t and split it between
consumption ct and capital tomorrow, kt+1 in �xed proportions, independent of
the level of the current capital stock and thus output of the economy (remember
the Solow model?). That is, let us guess that

kt+1 = g(kt) = sAk�t



6.1. AN EXAMPLE WITH ANALYTICAL SOLUTION 45

where s is a �xed number. Thus, applying the same guess for period t+1 yields

kt+2 = g(kt+1) = sAk�t+1:

Given these guesses we have

Ak�t � kt+1 = (1� s)Ak�t
Ak�t+1 � kt+2 = (1� s)Ak�t+1

Using these two equations in (6:2) yields

1

(1� s)Ak�t
=

��Ak��1t+1

(1� s)Ak�t+1

=
��

(1� s)kt+1
and thus

kt+1 = ��Ak�t

But we had guessed
kt+1 = sAk�t

and thus with s = �� and therefore kt+1 = ��Ak�t equation (6:2) is satis�ed
for every kt: That is, no matter how big kt is, if we set

kt+1 = ��Ak�t

kt+2 = ��Ak�t+1

the Euler equation is satis�ed. Thus we found exactly what we were looking
for, namely a function that tells us that if the planner gets into the period with
capital kt; how much does she take out of the period. And since we know the
initial capital stock k0; we can compute the entire sequence of capital stocks
from period 0 on (of course always conditional on parameter values �; �). A
computer is very good carrying out such a calculation, as you will see in one of
Philip�s tutorials. Finally, it is obvious that from the resource constraint

ct = Ak�t � kt+1 + (1� �)kt
we can compute consumption over time, once we know how capital evolves over
time.
We now want to brie�y analyze the dynamics of the capital stock, starting

from k0 and being described by the so-called policy function

kt+1 = ��Ak�t

There are two steady states of this policy function in which kt+1 = kt = k: The
�rst is, trivially, k = 0: The second is our steady state from above, k = k�;
solving

k� = ��A (k�)
� or

k� = (��A)
1

1�� =

�
�A

�+ 1

� 1
1��
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k(0)                k(1) k* k(t)

k(t)=k(t+1)

α
k(t+1)=αβAk(t)

k(1)

k(2)

Figure 6.1: Dynamics of the Neoclassical Growth Model

(remember that � = 1 was assumed above).

In order to describe the dynamics of the capital stock it is best to plot
the policy function. Figure 6.1 does exactly that. In addition it contains the
line kt+1 = kt: If we start from the initial capital stock k0; the graph gives
k1 = g(k0) on the y-axis. Going back to the kt+1 = kt line gives k1 on the
x-axis. Then the graph gives k2 = g(k1). Going again to the kt+1 = kt line
gives k2 on the x-axis. One can continue this procedure. The important feature
from this �gure is that if k0 < k�; over time kt increases and approaches the
steady state k�: This is true for any k0 > 0 with k0 < k�: In contrast, if k0 > k�;
then the capital stock approaches the steady state from above. In either case
there is monotonic convergence to the steady state: the capital stock is either
monotonically increasing or decreasing and over time approaches the steady
state, which justi�es our focus in the previous section. Technically speaking,
the unique positive steady state is globally asymptotically stable.
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6.2 Linearization of the Euler Equation

In general the Euler equation is not a linear equation, and thus we can�t easily
solve it. But what we can do is to make the Euler equation linear by approximat-
ing the nonlinear equation linearly around its steady state. Roughly speaking
this is nothing else but doing a Taylor series approximation around the steady
state of the model, which we have solved before. The resulting approximated
Euler equation is linear, and hence easy to solve for the policy function g of
interest. Keep in mind, however, that we only solve for an approximate solution
(unless of course we assume quadratic utility and linear production, as above).
While there are numerical methods to solve for the exact nonlinear solution,
these are not easy to implement and thus not discussed in this class.
Let c�; k�; y� denote the steady state values of consumption, capital and

output. We have already discussed above how to �nd this steady state. The
idea is to replace the nonlinear Euler equation

u0(ct) = �u0(ct+1)
�
�Ak��1t+1 + (1� �)

�
(6.3)

where

ct = Ak�t � kt+1 + (1� �)kt
ct+1 = Ak�t+1 � kt+2 + (1� �)kt+1

with a linear version, because linear equations are much easier to solve.

6.2.1 Preliminaries

There is one crucial tool for turning the nonlinear Euler equation into a linear
equation: Taylor�s theorem. This theorem states that we can approximate a
function f(x) around a point a by writing

f(x) = f(a) + f 0(a)(x� a) + 1
2
f 00(a)(x� a)2 + 1

6
f 000(a)(x� a)3 + : : :

Note that the approximation is only exact by using an in�nite number of terms.
But in order to make a nonlinear equation into a linear equation we will use the
approximation

f(x) � f(a) + f 0(a)(x� a) (6.4)

and hope we will not make too big of an error. Note however that for all x 6= a
we will make an error; how severe this error is depends on the application and
can only exactly be answered for examples in which we know the true solution.
In our application we will use as point of approximation a the steady state of
the economy. As long as the economy does not move too far away from the
steady state, we can hope that the approximation in (6:4) is accurate.
Similarly, for a function of two variables we have

f(x; y) � f(a; b) +
@f(a; b)

@x
(x� a) + @f(a; b)

@y
(y � b) (6.5)
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Finally, often researchers prefer to express deviations of a variable xt from its
steady state x� not in its deviation (xt � x�); but in its percentage deviation
x̂t =

xt�x�
xt

; since this is easier to interpret. For future reference note that

log(xt)� log(x�) = log
� xt
x�

�
= log

�
xt � x�
x�

+ 1

�
� x̂t =

xt � x�
x�

Also for future reference note that

xt � x� =
xt � x�
x�

x� = x̂tx
�

We will use these facts repeatedly below.

6.2.2 Doing the Linearization

We want to linearize

u0(ct) = �u0(ct+1)
�
�Ak��1t+1 + (1� �)

�
where (6.6)

ct = Ak�t � kt+1 + (1� �)kt (6.7)

ct+1 = Ak�t+1 � kt+2 + (1� �)kt+1 (6.8)

Let�s do this slowly for the �rst time, since this procedure is prone to making
mistakes (believe me, I know what I am talking about). We start with equation
(6:7); which can be rewritten as

0 = Ak�t � kt+1 + (1� �)kt � ct (6.9)

Let us do term by term. First, let�s linearize the term Ak�t around the steady
state k�: This yields, using (6:4);

Ak�t � A (k�)
�
+ �A (k�)

��1 � (kt � k�)
= A (k�)

�
+ �A (k�)

��1 � k�k̂t
= A (k�)

�
+ �A (k�)

�
k̂t

Note that the only variable here is k̂t; since k� is the steady state capital stock,
and hence a �xed number, and the rest is just a bunch of parameters. Now
consider the term �kt+1; again using (6:4) we get

�kt+1 � �k� � (kt+1 � k�) = �k� � k�k̂t+1

where in this case the linear approximation is exact, since the function f(kt+1) =
�kt+1 is linear to start with. Similarly

(1� �)kt � (1� �)k� + (1� �)k�k̂t
�ct � �c� � c�ĉt
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and thus the linear approximation of (6:9) reads as

0 � A (k�)
�
+ �A (k�)

�
k̂t � k� � k�k̂t+1 + (1� �)k� + (1� �)k�k̂t � c� � c�ĉt

= A (k�)
� � k� + (1� �)k� � c� + �A (k�)� k̂t � k�k̂t+1 + (1� �)k�k̂t � c�ĉt:

(6.10)

Finally realize that, at the steady state (c�; k�), the resource constraint (6:9)
holds. Thus we can simplify (6:10) to (replacing the � with an equality sign)

0 � �A (k�)
�
k̂t � k�k̂t+1 + (1� �)k�k̂t � c�ĉt

c�ĉt = �A (k�)
�
k̂t � k�k̂t+1 + (1� �)k�k̂t

=
h
�A (k�)

��1
+ (1� �)

i
k�k̂t � k�k̂t+1 (6.11)

which is a linear equation with the three variables (ĉt; k̂t; k̂t+1): Using exactly
the same logic we can linearize (6:8) to obtain

c�ĉt+1 = �A (k�)
�
k̂t+1 � k�k̂t+2 + (1� �)k�k̂t+1

=
h
�A (k�)

��1
+ (1� �)

i
k�k̂t+1 � k�k̂t+2 (6.12)

The really painful equation is equation (6:6)

0 = �u0(ct) + �u0(ct+1)
�
�Ak��1t+1 + (1� �)

�
= �u0(ct) + (1� �)�u0(ct+1) + �u0(ct+1)�Ak��1t+1 (6.13)

Again proceeding term by term we have, using (6:4);

�u0(ct) � �u0(c�)� u00(c�)(ct � c�)
= �u0(c�)� u00(c�)c�ĉt

and
(1� �)�u0(ct+1) = (1� �)�u0(c�) + (1� �)�u00(c�)c�ĉt+1

The last term is more complicated, since it involves a function of two variables,
(ct+1; kt+1): Using (6:5) we have

�u0(ct+1)�Ak
��1
t+1

� �u0(c�)�A (k�)
��1

+ �u00(c�)�A (k�)
��1

(ct+1 � c�) + �u0(c�)�(�� 1)A (k�)��2 (kt+1 � k�)
= �u0(c�)�A (k�)

��1
+ �u00(c�)�A (k�)

��1
c�ĉt+1 + �u

0(c�)�(�� 1)A (k�)��1 k̂t+1

Inserting all terms into (6:13) and re-grouping yields

0 = �u0(c�) + (1� �)�u0(c�) + �u0(c�)�A (k�)��1

�u00(c�)c�ĉt + (1� �)�u00(c�)c�ĉt+1 + �u00(c�)�A (k�)��1 c�ĉt+1 + �u0(c�)�(�� 1)A (k�)��1 k̂t+1
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But the entire �rst line of this expression equals zero, since equation (6:13) holds
in the steady state (ct = ct+1 = c�; kt+1 = k�): Thus the linearized version of
equation (6:13) becomes

u00(c�)c�ĉt = (1� �)�u00(c�)c�ĉt+1 + �u00(c�)�A (k�)��1 c�ĉt+1 + �u0(c�)�(�� 1)A (k�)��1 k̂t+1
=

h
(1� �) + �A (k�)��1

i
�u00(c�)c�ĉt+1 + �u

0(c�)�(�� 1)A (k�)��1 k̂t+1 (6.14)

which is again a linear function in (ĉt; ĉt+1; k̂t+1): Arguably the system of equa-
tions (6:6); (6:7) and (6:8) is a mess, but it is a linear mess. Inserting (6:6) and
(6:7) into (6:8) yields

u00(c�)
nh
�A (k�)

��1
+ (1� �)

i
k�k̂t � k�k̂t+1

o
=

h
(1� �) + �A (k�)��1

i
�u00(c�) �nh

�A (k�)
��1

+ (1� �)
i
k�k̂t+1 � k�k̂t+2

o
+�u0(c�)�(�� 1)A (k�)��1 k̂t+1

Collecting terms yieldsn
u00(c�)

h
�A (k�)

��1
+ (1� �)

io
k�k̂t

�
(

u00(c�)k� +
h
(1� �) + �A (k�)��1

i
�u00(c�)

h
�A (k�)

��1
+ (1� �)

i
k�

+�u0(c�)�(�� 1)A (k�)��1

)
k̂t+1

+
h
(1� �) + �A (k�)��1

i
�u00(c�)k�k̂t+2

= 0

or
c1k̂t + c2k̂t+1 + c3k̂t+2 = 0 (6.15)

where the three constants (c1; c2; c3) are given by

c1 = u00(c�)k�=� < 0

c2 = �
n
u00(c�)k� + u00(c�)k�=� + �u0(c�)�(�� 1)A (k�)��1

o
> 0

c3 = u00(c�)k� < 0

since in the steady state
h
(1� �) + �A (k�)��1

i
� = 1: The nice thing about

equation (6:15) is that this, in contrast to (6:3); is a linear second order di¤erence
equation, which we know very well how to solve.
Again, what we are looking for is a policy function giving k̂t+1 = ĝ(k̂t): Let

us again guess that this function takes the form

k̂t+1 = ĝ(k̂t) = ŝk̂t and thus

k̂t+2 = ŝk̂t+1 = ŝ2k̂t
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where ŝ is a constant to be determined. Inserting the guessed policy function
into equation (6:15) yields2

c1k̂t + c2ŝk̂t + c3ŝ
2k̂t = 0 or

c1 + c2ŝ+ c3ŝ
2 = 0

ŝ2 +
c2
c3
ŝ+

c1
c3

= 0

ŝ2 � 1ŝ+ 2 = 0

where

2 =
c1
c3
=
1

�

1 = �c2
c3
= 1 +

1

�
+
�u0(c�)�(�� 1)A (k�)��1

u00(c�)k�

This is simply a quadratic equation in ŝ with the two solutions

ŝ1;2 =
1
2
�
�
21
4
� 2

� 1
2

There are some good news here. First we note that, since

1 > 2 + 1 (6.16)

we have that

21
4
� 2 >

1

4
(1 + 2)

2 � 2 =
1

4

h
(1 + 2)

2 � 42
i
=
1

4
(1� 2)

2 � 0 (6.17)

and thus both roots are real. Second we note that

ŝ1 � ŝ2 =
21
4
� 21
4
+ 2 =

1

�

and since 1 > 0 we know that both roots are positive. The bigger root satis�es,
using (6:16) and (6:17)

ŝ1 =
1
2
+

�
21
4
� 2

� 1
2

>
1
2
+
1

2
(2 � 1) =

1 + 2 � 1
2

>
22
2
= 2 =

1

�

and thus the smaller root satis�es

ŝ2 =
1
2
�
�
21
4
� 2

� 1
2

< 1:

2The procedure of parameterizing the policy function by a coe¢ cient ŝ and then solving
for it is sometimes called the method of undetermined coe¢ cients.
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What have we accomplished? We guessed that the optimal policy function
satis�ed

k̂t+1 = ŝk̂t

and found that such a function indeed satis�es the log-linearized version of the
Euler equation, as long as either ŝ = ŝ1 or ŝ = ŝ2: But what is the right choice
of ŝ? Remember that

k̂t =
kt � k�
k�

and thus

kt = (1 + k̂t)k
�:

Also remember that we are dealing with the case T = 1: Therefore we only
have the initial condition k0 given, but no terminal condition. Now suppose
that we select ŝ1 > 1 and suppose k0 < k�; so that k̂0 < 0; that is we start with
our capital stock below the steady state. But our policy function tells us

k̂1 = ŝ1k0

k̂2 = ŝ1k1 = ŝ21k0 and in general

k̂t = ŝt1k0 (6.18)

Since ŝ1 > 1; as t gets larger and larger, ŝt1 grows exponentially towards in�nity.
Consequently k̂t becomes more and more negative. At some point in time we
have k̂t < �1; and thus

kt = (1 + k̂t)k
� < 0 (6.19)

which can never be optimal. A similar argument shows that if the economy
starts with k0 > k� and thus k̂0 > 0; then k̂t ! 1 as time goes to in�nity.
Thus kt increases over time (kt+1 > kt) and kt !1 with time. But again this
cannot be optimal since

ct = Ak�t + (1� �)kt � kt+1 < Ak�t � �kt < 0

if kt >
�
A
�

� 1
1�� ; which happens for large enough t (as long as � < 1). It can

simply not be optimal to drive the capital stock to in�nity, since at some point
simply replacing the depreciated capital requires all of current production, and
nothing is left for consumption. Thus with ŝ = ŝ1 the capital stock either
becomes negative or explodes over time which cannot be the optimal policy of
the social planner. Therefore we can discard this root, and focus on the other
root ŝ2 2 (0; 1): For this root we have that ŝt1 ! 0 as t becomes large. Thus
from (6:18) we see that k̂t goes to 0 over time, and from (6:19) we see that
kt converges to the steady state k� over time. Since the optimal policy of the
linearized problem is

k̂t+1 = ŝk̂t

with ŝ 2 fŝ1; ŝ2g and we have discarded the case ŝ = ŝ1; our optimal policy is

k̂t+1 = ŝ2k̂t



6.2. LINEARIZATION OF THE EULER EQUATION 53

where ŝ2 2 (0; 1) is a �xed number that of course depends on the parameter
values of the economy. The dynamics of the capital stock of the economy (and
thus output, consumption and the like) is described as monotonic convergence to
the steady state, from above if k0 > k� and from below if k0 < k�: It looks very
much like the dynamics in �gure 6:1; with the di¤erence that the policy function
in the �gure was nonlinear, whereas now it is linear (in percentage deviations).
The root ŝ1 is sometimes called the unstable root, because it leads the capital
stock to explode or implode. The root ŝ2 is called the stable root, since it leads
to monotonic convergence to the steady state. A situation where both roots are
real and exactly one is stable is a very desirable situation, because then we have
one, and only one, optimal policy function. The neoclassical growth model has
this desired property.
Two �nal remarks. First, note that the policy function is linear in percentage

deviations from the steady state. Of course it is easy to derive the policy function
in capital levels. We have

k̂t+1 = ŝ2k̂t (6.20)
kt+1 � k�

k�
= ŝ2 �

kt � k�
k�

kt+1 � k� = ŝ2 (kt � k�)
kt+1 = (1� ŝ2)k� + ŝ2kt (6.21)

Second, I again want to stress that the so-derived policy function is only an
approximation to the true policy function. We can see this from the example in
the last section where we derived the true policy function as

kt+1 = ��Ak�t (6.22)

Whatever the value for ŝ2 is (of course we can calculate it, it is a messy function
of the parameters of the model), the approximation in (6:21) is not equal to the
true policy function (6:22); unless of course we are in the steady state: kt = k�:

Note however, since k̂t � log(kt)� log(k�), we have from (6:20)

log(kt+1) � (1� ŝ2) log(k�) + ŝ2 log(kt):

On the other hand, taking logs of (6:22) yields

log(kt+1) = log (��A) + � log(kt):

Thus, for the particular example our linear (in percentage deviations from the
steady state) approximation is very accurate; in fact the only approximation
(which we know is very good for small deviations from steady state) is due to
the fact that

kt � k�
k�

� log(kt)� log(k�)

Thus for the parameterization in the previous section (� = 1; u(c) = log(c)), we
would expect ŝ2 = �: It is a useful exercise to verify this.
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Obviously all other variables of interest (consumption c; output y and in-
vestment i) can be easily computed once we know capital. For this one can
either use the exact equations, e.g.

ct = Ak�t + (1� �)kt � kt+1
or the linear approximation, if one prefers this

c�ĉt =
h
�A (k�)

��1
+ (1� �)

i
k�k̂t � k�k̂t+1:

6.3 Analysis of the Results

6.3.1 Plotting the Policy Function

One way to represent the results from the previous section is to simply plot
k̂t+1 = g(k̂t) against k̂t as in �gure 6:1: Usually the dynamics of the capital
stock can be deduced from such a plot already fairly completely, at least in a
model without stochastic shocks as we have discussed so far.

6.3.2 Impulse Response Functions

The idea of an impulse response function is to plot what happens to our variables
of interest in response to an exogenous shock to the economy, conditional on the
economy being in the steady state before the shock. While in a model without
stochastic shocks this is a bid strange, one can still do it. Suppose that the
economy at time t = 0 is in the steady state (k0 = k�; k̂0 = 0), and then at the
beginning of period 1 for some reason the capital stock gets reduced by 1% (a
terroristic attack, say). We can use the policy function k̂t+1 = g(k̂t) to deduce
what happens to the capital stock over time:

k̂0 = 0; k0 = k�

k̂1 = �0:01; k1 = 0:99k�

k̂2 = �0:01ŝ2; k2 = (1� 0:01ŝ2)k� and in general
k̂t = �0:01ŝt�12 ; kt = (1� 0:01ŝt�12 )k�

A plot of the sequence fktgTt=0 or fk̂tgTt=0 is called an impulse response function,
because it plots the response of the capital stock to the initial impulse of a shock
over time. Obviously we can do exactly the same with the policy function of
the nonlinear problem, if we can possibly solve it.
Figure 6.2 plots an impulse response function for capital. The impulse is a

1% reduction of the capital stock, and the policy function used is k̂t+1 = 0:333k̂t:
We observe the quick convergence of the model back to its steady state.

6.3.3 Simulations

In a deterministic model (i.e. a model without stochastic shocks) a simulation
is something very similar to an impulse response. In a stochastic model the
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Figure 6.2: Impulse Response Function for Capital

di¤erence between the two ways to analyze the results of the model will be
more di¤erent. In a simulation one picks some initial condition of the economy,
k0; and then uses the policy function g to simulate a long sequence of capital
stocks according to kt+1 = g(kt); that is

k1 = g(k0)

k2 = g(k1)

and so forth. Of course one can again plot the sequence fktg against time.
Alternatively, one can compute statistics of interest of these arti�cial data (for
example the standard deviation, autocorrelation and so forth). In order to
assess how good the model performs empirically one can then compare the
statistics derived from the arti�cial model data to the statistics computed from
real data. We do exactly this when taking our model (with stochastic shocks)
to the business cycle data.
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6.4 Summary

The previous discussion about the linearization approach was very detailed, so
it is worth summarizing the main steps involved.

1. Obtain the equations characterizing socially optimal (equivalently, equi-
librium allocations)

2. Linearize them

3. Guess a linear policy function and solve for the undetermined coe¢ cients
of this policy function

4. Analyze the results by plotting the policy functions, impulse responses,
simulations and compute statistics of the arti�cial data generated by the
model. Finally compare them to real data.

5. Interpret the results.

This sounds very involved, but the nice thing is that a lot of these steps
can be carried out by a computer, since they are purely mechanical. What is
more, there now exists pre-programed software that does it for you, so you don�t
have to do it by yourself. The toolkit by Harald Uhlig that Philip is and will
be using in the Tutorials is such freely available software. What still requires
human work, however, are steps 1.,2. and 5. The painful step 2. of linearizing
the equations will hopefully be somewhat automated soon, but so far you still
have to do it by yourself.



Chapter 7

A Note on Economic
Growth

So far the model we described does not display long-run growth, since the econ-
omy converges to its steady state. The data, in contrast, shows long-run growth
at a positive rate. Part of this growth in the data is due to population growth,
but even GDP per capita grows at a positive rate per capita. While long-run
growth is not our main interest, it still would be nice if our model is consistent
with the long-run growth observations as well. Fortunately this is quite easy to
achieve.

7.1 Preliminary Assumptions and De�nitions

Assume that the population and labor force grows at constant net growth rate
n; so that the number of workers is given by

nt = (1 + n)tn0

= (1 + n)t

where n0 = 1 is the size of the labor force at period 0: Furthermore assume that
the production function is given by

Yt = AK�
t

�
(1 + g)tnt

�1��
where g is the growth rate of technological, labor augmenting progress. Thus
the aggregate resource constraint is given by

Ct +Kt+1 � (1� �)Kt = AK�
t

�
(1 + g)tnt

�1��
I used capital letters for output and capital now, since now it is important to
distinguish between aggregate and per capita variables. All aggregate variables
will now be growing because of population growth and technical progress; thus

57
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our aim is to reformulate the economy in terms of variables that are, at least
potentially, constant over time.
Thus a few tedious, but useful de�nitions: let

ct =
Ct

(1 + n)t

yt =
Yt

(1 + n)t

kt =
Kt

(1 + n)t

denote per capita variables and

~ct =
Ct

(1 + n)t(1 + g)t
=

ct
(1 + g)t

~yt =
Yt

(1 + n)t(1 + g)t
=

yt
(1 + g)t

~kt =
Kt

(1 + n)t(1 + g)t
=

kt
(1 + g)t

denote variables per e¤ective unit of labor.
The social planner problem is now given by

max
fct;kt+1gTt=0

TX
t=0

�tu(ct)

subject to

Ct +Kt+1 � (1� �)Kt = AK�
t

�
(1 + g)tnt

�1��
ct � 0 and K0 > 0 given

7.2 Reformulation of Problem in E¢ ciency Units

We want to rewrite this problem in terms of variables that are not constantly
growing over time, that is, in terms of the ~ variables. First note that K0 =
k0 = ~k0; since (1 + n)0 = (1 + g)0 = 1: Second, ct � 0 if and only if ~ct � 0; so
the only two things we have to worry about are the resource constraint and the
utility function.
Divide the resource constraint by (1 + n)t(1 + g)t to obtain

Ct
(1 + n)t(1 + g)t

+
Kt+1

(1 + n)t(1 + g)t
� (1� �)Kt

(1 + n)t(1 + g)t
=
AK�

t ((1 + g)
tnt)

1��

(1 + n)t(1 + g)t

and, using the variable de�nitions

~ct +
Kt+1

(1 + n)t(1 + g)t
� (1� �)~kt =

AK�
t ((1 + g)

tnt)
1��

(1 + n)t(1 + g)t
:
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But now note that

Kt+1

(1 + n)t(1 + g)t
=

Kt+1

(1 + n)t+1(1 + g)t+1
� (1 + g)(1 + n) = (1 + g)(1 + n)~kt+1

AK�
t ((1 + g)

tnt)
1��

(1 + n)t(1 + g)t
= A

K�
t

[(1 + n)t(1 + g)t]
� �

((1 + g)tnt)
1��

[(1 + n)t(1 + g)t]
1�� = A~k�t

and thus the resource constraint becomes

~ct + (1 + g)(1 + n)~kt+1 � (1� �)~kt = A~k�t :

Finally let us work on the lifetime utility function. Assume that the period
utility function of the constant relative risk aversion form

u(c) =
c1��

1� �

where � is a parameter.1 If � = 1; we take the utility function to be u(c) =
log(c): Note that with this utility function we have that

u(ct) =
c1��t

1� � =
(~ct(1 + g)

t)
1��

1� � = (1 + g)t(1��)
~ct
1��

1� �

Thus we can rewrite the lifetime utility function of the representative family as

TX
t=0

�tu(ct) =

TX
t=0

�t(1 + g)t(1��)u(~ct)

=
TX
t=0

~�
t
u(~ct)

where ~� = �(1 + g)1��:
After all the smoke has settled, the social planner problem is given by

max
fct;kt+1gTt=0

TX
t=0

~�
t
u(~ct)

subject to

~ct + (1 + g)(1 + n)~kt+1 � (1� �)~kt = A~k�t

~ct � 0 and ~k0 > 0 given

1Note that the paramter � is equal to the coe¢ cient of relative risk aversion:

�cu00(c)
u0(c)

= �

and thus measures how risk averse the household is. The higher �; the higher is the risk
aversion of the household.
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7.3 Analysis

Again forming the Lagrangian

L =
TX
t=0

~�
t
u(~ct) +

TX
t=0

�t

�
A~k�t � ~ct � (1 + g)(1 + n)~kt+1 + (1� �)~kt

�
= : : :+ ~�

t
u(~ct) + ~�

t+1
u(~ct+1) + : : :

+�t

�
A~k�t � ~ct � (1 + g)(1 + n)~kt+1 + (1� �)~kt

�
+�t+1

�
A~k�t+1 � ~ct+1 � (1 + g)(1 + n)~kt+2 + (1� �)~kt+1

�
+ : : :

Taking �rst order conditions with respect to ~ct; ~ct+1 and ~kt+1 yields

~�
t
u0(~ct) = �t

~�
t+1

u0(~ct+1) = �t+1

(1 + g)(1 + n)�t = �t+1

�
�A~k��1t+1 + (1� �)

�
Dividing the second equation by the �rst yields

�t+1
�t

=
~�u0(~ct+1)

u0(~ct)

From the third equation we have

�t+1
�t

=
(1 + g)(1 + n)�

�A~k��1t+1 + (1� �)
�

and thus combining the two yields

~�u0(~ct+1)

u0(~ct)
=

(1 + g)(1 + n)�
�A~k��1t+1 + (1� �)

�
~�u0(~ct+1)

�
�A~k��1t+1 + (1� �)

�
(1 + g)(1 + n)

= u0(~ct) (7.1)

which is almost exactly the Euler equation we found when abstracting from pop-
ulation and productivity growth, with the exception that the marginal product
of capital has to be divided by (1 + g)(1 + n):

7.4 The Balanced Growth Path

We can repeat exactly the same analysis of a steady state in the model with
growth. But if ~ct is constant over time, per capita consumption ct = ~ct(1 + g)t
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grows at constant rate g; thus such a situation is not called a steady state, but
a balanced growth path (since all per capita variables grow at constant rates).
Now let us characterize the balanced growth path. Since ~ct = ~ct+1; the balanced
growth path e¤ective capital stock ~k� satis�es

~�

�
�A~k��1 + (1� �)

�
(1 + g)(1 + n)

= 1

or

(1 + g)1��
�
�A~k��1 + (1� �)

�
(1 + �)(1 + g)(1 + n)

= 1

~k� =

�
(1 + �)(1 + g)(1 + n)(1 + g)��1 � (1� �)

�A

� 1
��1

=

�
�A

(1 + �)(1 + g)(1 + n)(1 + g)��1 � (1� �)

� 1
1��

Note that if the period function is logarithmic, that is � = 1; and the terms
�g; �n; gn and �ng are su¢ ciently small (which is the case as long as �; n; g are
small), then

~k� =

�
�A

�+ g + n+ �)

� 1
1��

which is as before, only that the physical depreciation rate � has to be augmented
by the population growth rate and the growth rate of technological progress.
From the resource constraint e¤ective consumption is given by

~c� = A~k�t � (1 + g)(1 + n)~kt+1 + (1� �)~kt
= A

�
~k�
��
� [(1 + g)(1 + n)� (1� �)] ~k�

� A
�
~k�
��
� [g + n+ �] ~k�

and e¤ective output in the balanced growth path is given by

~y� = A
�
~k�
��

which in the log-utility case equals

y� = A

�
�A

�+ g + n+ �

� �
1��

= A
1

1��

�
�

�+ g + n+ �

� �
1��

(7.2)

As discussed before, all per-capita variables grow at constant rate g in the
balanced growth path, and all aggregate variables at rate n+ g (approximately,
using (1 + n)(1 + g) � 1 + n + g). How about wages and interest rates, along
the balanced growth path?
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As before, the representative �rm solves the maximization

maxAK�
t

�
(1 + g)tnt

�1�� � wtnt � (rt � �)Kt

where Nt and Kt is the number of workers and capital the �rm hires. The �rst
older conditions read as

wt = (1� �)(1 + g)tA
�

Kt

(1 + g)tnt

��
= (1� �)(1 + g)tA

�
~kt

��
rt = �A

�
Kt

(1 + g)tnt

���1
� � = �A

�
~kt

���1
� �

Along the balanced growth path ~kt is constant, and thus the real interest rate
rt is constant and the real wage wt is growing at a constant rate g:
To summarize, with economic growth it is as easy, or as hard, to solve this

model that without growth. The presence of economic growth a¤ects, however,
the choice of the parameter values. How to pick these parameter values in
discussed next.



Chapter 8

Calibration

Let us �rst collect all the parameters of the model. There are three sets of
parameters we need to choose

� Technology parameters: (A;�; �; g)

� Demographic parameters: (n)

� Preference Parameters: (�; �)

The process of choosing these parameters is often called calibration. The
idea is the following: we want to make the model�s predictions to match cer-
tain observations from the data. Since we are interested in the business cycle
properties of the model and do not want to cheat by choosing parameter values
that help the model deliver good business cycle implications, we rather choose
parameter values such that the long run implications of the model matches long
run average observations from the data. Obviously the long run facts di¤er by
countries. I will present a choice of parameter values calibrated to US data.
It is interesting, and a good start for a diploma thesis, to do exactly the same
analysis for other countries as well.
First we have to choose the length of a period, since our growth rates, for

example, refer to growth rates from one period to the next. Therefore it is
obviously crucial to specify how long a period lasts. Since most of business cycle
research is done with quarterly data, we will use as period length a quarter.

8.1 Long Run Growth Rates

In the model n equals the growth rate of the population, which equals the growth
rate of the labor force in the model as well. The annual average population
growth rate in the US is about 1:1% per year. Thus the quarterly growth rate
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of the population (labor force) solves

(1 + n)
4
= 1:011 or

n = (1:011)
1
4 � 1 � 0:27%

We follow the same logic for the growth rate of technology g; which gives the
growth rate of output per capita (per worker or per hour worked, all the same
in the model). Between 1947 and 2004 the average growth rate of GDP per
capita was 2:2% per year, and thus

(1 + g)4 = 1:022 or

g = (1:022)
1
4 � 1 � 0:55%

8.2 Capital and Labor Share

We saw above that the production function parameter � equals the capital share
in the model. Thus we want to choose a value for � that corresponds to the
long run capital share in the data. At �rst this seems straightforward to do,
until one realizes that it is not completely obvious how to compute the labor
share and capital share in the data. One important problem is proprietor�s
income, that is, the income that people earn that own and run their business,
supplying both their labor and their capital to the business. Another problem
is the imputation of rental income for owner-occupied housing. If you own the
house you live in, conceptually the rent that you should charge yourself for your
home should count as capital income (since the rent a landlord gets from her
tenants counts as capital income). In practice the statistics often do not capture
this.
Without going into the dirty details we choose as compromise a � = 1

3 ;
re�ecting a long-run labor share in the data of roughly 2

3 : The range of estimates
used in the literature (at least the one I am aware of) is � 2 [0:25; 0:4]:

8.3 The Depreciation Rate

Output is divided between consumption and investment. In the BGP investment
equals ~{� = [g + n+ �] ~k�: Thus the investment share of output equals

I

Y
=

~{�

~y�
= (g + n+ �)

~k�

~y�
= (g + n+ �)

K

Y
and thus

(g + n+ �) =
I=Y

K=Y

� =
I=Y

K=Y
� n� g

Thus with long-run averages for the investment-output ratio and the capital-
output ratio from the data we can pin down �: In US data the investment-output



8.4. THE TECHNOLOGY CONSTANT A 65

share is roughly 25% in the long run, and the capital-output ratio is roughly
2:6 on an annual level. Note that the capital stock is a stock, and thus refers
to a variable at a point in time. In contrast, output and investment are �ow
variables, and refer to a period of time (and thus depend on the period length).
Thus if the annual capital-output ratio is 2:6; the quarterly ratio is 2:6�4 = 10:4;
re�ecting the fact that quarterly GDP is one forth of annual GDP.
Thus we have as quarterly depreciation rate

� =
0:25

10:4
� 0:0027� 0:0055 = 1:6%

Here we also see the importance of incorporating or ignoring growth in the
model: abstracting from growth we would have chosen a depreciation rate of
� = 2:42% per quarter.

8.4 The Technology Constant A

The choice of A simply pins down the unit of measurement. Doubling A simply
doubles all economic variables, without changing anything else. Often econo-
mists set A = 1 or set A such that steady state output ~y = 1 (conditional on
all other parameters this is easily done using (7:2)). But it is a good check of
your answers to questions (or your computer code) that indeed A is simply a
normalization, and multiplying it by some number should multiply all economic
variables by the same number (apart from ratios of variables and the interest
rate, of course, which should remain unchanged).

8.5 Preference Parameters

The crucial equation for choosing preference parameters is the Euler equation
(7:1)

~�u0(~ct+1)

�
�A~k��1t+1 + (1� �)

�
(1 + g)(1 + n)

= u0(~ct)

which in the BGP becomes

~�

�
�A~k��1t+1 + (1� �)

�
(1 + g)(1 + n)

= 1

Using the fact that the real interest rate equals the marginal product of capital
net of depreciation, this becomes

~�
1 + r�

(1 + g)(1 + n)
= 1 or

�(1 + g)1�� (1 + r�)

(1 + g)(1 + n)
= 1 or

1 + r� = (1 + g)(1 + n)(1 + �)(1 + g)��1
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Parameter A � � � �
g = 0; n = 0 1 0:33 2:42% 1 1%

g = 0:55%; n = 0 1 0:33 1:87% 1 0:45%
g = 0:55%; n = 0:27% 1 0:33 1:6% 1 0:2%

Table 8.1: Parameter Values

The parameter � is hard to pin down using long-run observations, so economists
often pick it independently. The preferred choice is � = 1; that is logarithmic
utility, in which case

1 + r� = (1 + g)(1 + n)(1 + �)

Finally, the time discount rate is chosen such that, conditional on the choices
for g and n; the balanced growth path of the model has an interest rate that
matches its long run average in the data. Of course there are many real interest
rates in the data, and the real interest rate in the model is both the risk-free
real interest rate as well as the real return on capital. The former has an annual
average of about 1%; the latter of about 7� 8%: As a compromise we target an
r� of 4% per annum, or 1% quarterly. Conditional on the values of g; n chosen
above this yields � = 0:002 = 0:2% quarterly. Again note that when calibrating
an economy without growth, one would choose a � = 1% quarterly.

8.6 Summary

The following Table 8.1 summarizes the common choice of parameters for the
model, both when calibrating a model without and with growth. The period
length is a quarter.



Chapter 9

Adding Labor Supply

Now we could in principle simulate the economy, compute impulse responses
or any other statistic that characterizes the equilibrium of the model. Before
that we have to address two shortcomings, however. First, as we saw in the
data section, the amount of labor used in production varies with the business
cycle. In fact, apart from GDP (growth) itself, the unemployment rate is pos-
sibly the most important indicator of the business cycle, with high employment
characterizing booms and low employment (high unemployment) characterizing
recessions. Therefore in this section we now give households the opportunity to
adjust their labor supply. Second, and this will be done in the next subsection
we will introduce technology shocks that will make our economy to actually dis-
play business cycles. The endogenous response of employment to these shocks
will then amplify the e¤ects of these shocks on GDP.
In the standard real business cycle model the labor market is modelled as

completely frictionless spot market where workers are paid their marginal prod-
uct as wage. This wage clears the labor market, and thus at the market wage
everyone that wants to work can do. There is no involuntary unemployment
(whatever that means), but certainly households that do not �nd it preferable
to work may choose not to supply any labor. Thus in no sense do we rule out
unemployment (or better, non-employment).

9.1 The Modi�ed Social Planner Problem

Lifetime preferences of the representative household become

TX
t=0

�t [u(ct)�  lt]

where lt 2 [0; 1] is the total number of hours the household works. We normalize
the total time the household has available in a given period to 1. The number
 is a parameter and determines how painful it is for a household to work,
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with higher  implying higher disutility from work. The parameter  can also
be interpreted as the marginal utility of leisure.1 The social planner problem
becomes2

max
fct;kt+1;ltgTt=0

TX
t=0

�t [u(ct)�  lt] (9.1)

subject to

ct + kt+1 � (1� �)kt = Ak�t l
1��
t

ct � 0; lt 2 [0; 1] and k0 > 0 given

The speci�cation of disutility of labor is peculiar, but, as we will see, necessary
to get good business cycle results. It is linear in the disutility of labor, which
will imply that labor supply reacts quite strongly to changes in wages. Since
empirically labor input is quite volatile over the business cycle we will need every
help we can get to make it volatile in the model as well. A strong response of
labor supply to hours is therefore desirable.

9.2 Labor Lotteries

But how can we justify that the marginal disutility of labor is constant at  ,
whereas the marginal utility of consumption is strictly decreasing (remember
that u00 < 0 was assumed)? Here is a trick that goes back to Richard Roger-
son (Journal of Monetary Economics, 1988), one of Ed Prescott�s most famous
students. Suppose that the utility function is given by

TX
t=0

�t [u(ct)� v(lt)]

where the function v satis�es v0 > 0 and v00 > 0: That is, working more reduces
utility, and the more you work the more hurts an additional hour of work.
Assume that households can either work full time, lt = 1 or not at all, lt = 0;

1The restriction to at most one unit of work is a simple normalization. Suppose a household
can supply at most h hours of work and the utility from leisure h� l is given by

 (h� l)

then
 (h� l) =  h�  l:

But since  h is simply a constant and adding constants to the utility function does not change
the optimal labor (or consumption) choice, both formulation of the utility function give exactly
the same outcomes.

2For simplicity we abstract from technology and population growth here. If the population
is growing and there is technological progress we have exactly the same problem, but the
production function would read as

AK�
t

�
(1 + g)tntlt

�1��
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that is, they either have a job or they don�t. Now assume that the social
planner (or some unemployment agency) provides full insurance against being
unemployed: no matter whether employed or unemployed, you receive the same
amount of consumption. For this to work obviously it cannot be possible for
agents to shirk unobservably, otherwise all people would claim to not be able to
�nd a job (because they don�t like to work and still get the same consumption
even if they don�t work). Finally denote by �t the fraction of the population
that the planner chooses to work (that is, �t is a choice variable of the social
planner) and by ct the consumption level that both employed and unemployed
get. Finally assume that all people get picked to work the same probability, so
�t is also the probability that a particular agent gets picked (remember we have
a big number of identical agents of total number equal to 1). What the planner
e¤ectively does is to play a labor lottery with full consumption insurance.
Then expected utility in the current period is given as

E fu(ct)� v(lt)g = �t [u(ct)� v(lt = 1)] + (1� �t) [u(ct)� v(lt = 0)]
= u(ct)� �t [v(1)� v(0)]� v(0)

But note that since v(1); v(0) are just two numbers and we can always ignore
constants added to the utility function (they don�t change �rst order conditions
and thus optimal choices), we can rewrite the e¤ective utility function as

E fu(ct)� v(lt)g = u(ct)�  �t

where  = [v(1)� v(0)] > 0 and we simply dropped the constant �v(0): Re-
placing the name of the choice variable �t by lt gives back our original utility
function. Also note that in the production function total labor input is equal
to the fraction of workers working, �t times their time worked (= 1); so total
labor input equals �t = lt: Thus the assumption of labor lotteries plus perfect
consumption insurance justi�es the usage of the particular functional form of
disutility of labor in the utility function. Below we will describe how one can
obtain the same result in a competitive market situation. But �rst we want
to analyze the optimality conditions of the social planner problem with labor
supply.

9.3 Analyzing the Model with Labor

Writing down the Lagrangian and ignoring the inequality constraints yields

L =
TX
t=0

�t [u(ct)�  lt] +
TX
t=0

�t
�
Ak�t l

1��
t + (1� �)kt � ct � kt+1

�
= : : : �t [u(ct)�  lt] + �t

�
Ak�t l

1��
t + (1� �)kt � ct � kt+1

�
+

�t+1 [u(ct+1)�  lt+1] + �t+1
�
Ak�t+1l

1��
t+1 + (1� �)kt+1 � ct+1 � kt+2

�
+ : : :
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Taking �rst order conditions with respect to ct; lt; ct+1; kt+1 and setting to zero
yields

�tu0(ct) = �t (9.2)

�t(1� �)A
�
kt
lt

��
= �t (9.3)

�t+1u0(ct+1) = �t+1 (9.4)

�t = �t+1

"
�A

�
lt+1
kt+1

�1��
+ (1� �)

#
(9.5)

Combining equations (9:2); (9:4) and (9:5) yields the familiar intertemporal
Euler equation

u0(ct) = �u0(ct+1)

"
�A

�
lt+1
kt+1

�1��
+ (1� �)

#
(9.6)

whereas combining (9:3) with (9:2) yields a new intratemporal optimality con-
dition

(1� �)A
�
kt
lt

��
=

 

u0(ct)
: (9.7)

This condition has a nice interpretation. It states that the social planner chooses
an optimal allocation such that the marginal product of labor (the left hand side
of (9:7)) equals the marginal rate of substitution between leisure and consump-
tion (the right hand side). To see that this optimality condition makes sense,
observe that it exactly equates the costs and bene�ts of an extra hour of work.
The cost, in terms of utility, of a marginal increase in labor, equals  : The ben-
e�t is to increase production and thus consumption by the marginal product of
labor, and thus utility from consumption by

(1� �)A
�
kt
lt

��
u0(ct):

In order to analyze this model one now would do exactly the same steps as
in the model without labor-leisure choice:

1. Find the deterministic steady state

2. Log-Linearize the resource constraints and the optimality conditions around
that steady state

3. Feed these equations into the software package of your choice, pick pa-
rameter values and let the computer �gure out policy functions, make
up impulse responses and simulations. The main di¤erence to the case
without labor is that now one has to solve for three policy functions

k̂t+1 = skk̂t

ĉt = sck̂t

l̂t = slk̂t
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instead of two as in the previous model (of course consumption can be
deduced from the resource constraint in both cases, so e¤ectively what is
new is the policy function for labor).

Since steps 2 and 3 are tedious and conceptually (but not mechanically)
simple, let us just simply determine the steady state. Since in the steady state
ct = ct+1; from equation (9:6) we have

1 = �

"
�A

�
l

k

�1��
+ (1� �)

#
which determines the steady state capital-labor ratio as

k

l
=

�
�A

� + �

� 1
1��

(9.8)

Equation (9:7) then determines consumption implicitly as

 

u0(c)
= (1� �)A

�
k

l

��
= (1� �)A

�
�A

� + �

� �
1��

Without an assumption on the utility function we cannot proceed further, ob-
viously. But if we assume u(c) = log(c) we get

c =
(1� �)A

 

�
�A

� + �

� �
1��

(9.9)

Finally we employ the resource constraint to solve for (k; l): In the steady state
the resource constraint reads as

c = Ak�l1�� � �k

= k

"
A

�
k

l

���1
� �
#

Using plugging in from equations (9:8) and (9:9) we get

(1� �)A
 

�
�A

� + �

� �
1��

= k

�
� + �

�
� �
�

or

k =

(1��)A
 

�
�A
�+�

� �
1��h

(1��)�+�
�

i =
�(1� �)A

 [(1� �)� + �]

�
�A

� + �

� �
1��

which looks like a big mess, but still allows for nice interpretation. In particular,
the steady state capital stock is increasing in the technology constant A and
decreasing in the depreciation rate � and the time discount rate � as well as the
disutility of labor parameter  :
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Finally, from (9:8) steady state hours worked are given by

l =

�
�A

� + �

� �1
1��

k

=
�(1� �)A

 [(1� �)� + �] �
� + �

�A
=
(1� �)(� + �)
 [(1� �)� + �] =

=
(1� �)(� + �)

 [(1� �)(� + �) + ��] =
1

 
h
1 + ��

(1��)(�+�)

i
=

1

 

�
1 + �

(1��)[ ��+1]

� (9.10)

Therefore the seemingly redundant rewritings were successful: we can unam-
biguously conclude that steady state labor supply is decreasing in  and �; in-
creasing in the depreciation rate � and decreasing in impatience �: Importantly,
the optimal amount of work is independent of the technology level parameter A.
This somewhat surprising fact is the result of two opposing e¤ects that exactly
cancel out in the case in which the utility function for consumption is logarith-
mic and disutility of labor is linear. A bigger A makes labor more productive,
thus e¤ectively leisure more expensive (because its opportunity costs increase).
Thus it is optimal for the planner to substitute leisure for consumption and let
the agent eat more and work more. But on the other hand there is an income
e¤ect: a higher A makes the economy generate the more output with the same
inputs. As a consequence it is optimal to increase both consumption and leisure.
Thus while consumption increases unambiguously (both income and substitu-
tion e¤ect are positive), for leisure a negative substitution e¤ect stands against
a positive income e¤ect, which in our utility speci�cation they exactly cancel
out. This will not be true for other utility functions, however.

9.4 A Note on Calibration

How should we pick  ? Using the same principles as before we want our economy
to reproduce a total amount of work in the model equal to the long run average
in the data. Empirically people, on average, work about one third of their non-
sleeping time, so we want to choose parameters such that l in equation (9:10)
equals to 1=3: Thus

1

3
=

1

 

�
1 + �

(1��)[ ��+1]

�
 =

3�
1 + �

(1��)[ ��+1]

�
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Conditional on the other parameter choices discussed in the calibration sec-
tion (without growth), a number of  = 2:62 is necessary for this.

9.5 Intertemporal Substitution of Labor Sup-
ply: A Simple Example

In the previous section we showed that, under certain assumptions, steady state
labor supply does not depend on the productivity parameter A: Now we want to
demonstrate how agents respond to temporarily high labor productivity (equal
to wages in the competitive equilibrium). We will show that agents will �nd it
optimal to intertemporally substitute labor supply and work hard when they
are productive, and work less hard when they are not. The extent to which this
intertemporal substitution of labor supply occurs depends crucially on the form
the disutility function for labor takes, which controls what is called the labor
supply elasticity.
We demonstrate this in a simple example where agents live for two periods,

don�t discount the future and only value consumption in the second period. Fur-
thermore we abstract from capital and capital accumulation, but let households
or the social planner store output between the �rst and the second period. The
main mechanism described here, however, will also be present in our general
model.
Let A1 denote labor productivity in the �rst period and A2 denote labor

productivity in the second period. The social planner problem becomes

max ln(c2)�  l1 �  l2
s.t. c2 = A1l1 +A2l2

Let us suppose that the constraints l1 � 1 and l2 � 1 are never binding. One
can show that as long as  > 1 this assumption is satis�ed. What does optimal
labor supply in both periods look like? If A1 > A2; then the agent should work
only in period 1; and if A2 > A1 she should only work in period 2: This is easy
to see: an extra unit of work brings about an extra disutility of work of  ; no
matter when it is done and how much the agent already works. Thus she should
always work that extra unit in the period in which she is more productive.
For concreteness, suppose that A1 > A2: Then l2 = 0: Solving

max ln(c2)�  l1
s.t. c2 = A1l1

yields l1 = 1
 and c2 =

A1

 : In general the optimal solution to the Planner
problem is given by the following table below. In the knife-edge case in which
A1 = A2 the agent is indi¤erent between working in the �rst or second period,
as long as total labor supply adds up to 1

 : The key observation is the following:
suppose that A2 is the normal, long run average labor productivity. Then we
see that when current productivity A1 is higher than normal, the agent works
more and when it is lower she works less.
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Case l1 l2 c2
A1 > A2

1
 0 A1

 

A1 < A2 0 1
 

A2

 

A1 = A2 = A 2 [0; 1 ] 2 [0; 1 ]
A
 

Table 9.1: Labor and Consumption Allocations

For the utility speci�cation we chose the e¤ects on labor supply of changes
in productivity are very strong: even the slightest deviation from normal pro-
ductivity results in large changes in labor supply. While this is partially due to
the fact that we abstracted from capital and consumption in the �rst period, it
also crucially depends on the fact that disutility of labor is linear. To see this,
suppose instead that the utility function is given by

ln(c2) +  ln(1� l1) +  ln(1� l2)

where 1� l1 is leisure in the �rst period and 1� l2 is leisure in the second period.
Maximizing this utility function subject to the resource constraint

c2 = A1l1 +A2l2

yields as one condition
A2
A1

=
1� l1
1� l2

While the overall allocation is tedious to solve for, we can readily make two
important observations. First, there is again intertemporal substitution of labor
supply: if A1 > A2; then l1 > l2; that is, the agent responds to temporarily
higher productivity by working more. Second, for this preference speci�cation
the household does not respond as drastically to di¤erences in A1 versus A2:
As long as the ratio A2

A1
is not too big, she works in both periods, and small

changes in A2

A1
do not lead to drastic labor supply responses. Since in the data

labor input varies substantially over the business cycle while real wages (labor
productivity) only moderately so, it is not surprising that the linear disutility
formulation has enjoyed bigger success.
We now introduce shocks to our production function constant At; from now

on called Total Factor Productivity (TFP). An important factor of making out-
put more volatile than the shocks to At fed into the model is the intertemporal
substitution of labor supply just described. Before doing so, let us make a
quick remark how the solution to the social planner problem translate into a
competitive equilibrium.

9.6 A Remark on Decentralization

So far we have discussed the social planner problem and characterized socially
optimal allocations. �Decentralization� refers to the question whether we can
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make this socially optimal allocation into a competitive equilibrium with the
right choice of prices. Here I will constrain myself to asserting that the welfare
theorems still apply and thus we know that we can �nd prices that decentralize
the socially optimal allocation. In fact we know what these prices are

rt = �A

�
lt
kt

�1��
� �

wt = (1� �)A
�
kt
lt

��
If with these prices, the consumer maximizes her lifetime utility, subject to the
budget constraint

ct + kt+1 = wtlt + (1 + rt)kt

she would choose exactly the same allocation fct; kt+1; ltgTt=0 as the social plan-
ner.3

3How would one decentralize these labor lotteries? Now indeed agents indeed would choose
a lottery, i.e. a probability �t of working. In addition all agents in the economy would write
insurance contracts with each other. Those agents who then get to work would earn as labor
income wt � 1; but would only keep �twt and pay the rest to those people that don�t get a
job. Their labor income, inluding the transfer from those that work, amounts to exactly �twt
as well. Why? There are 1� �t unemployed and �t employed people. So transfers t have to
solve

(1� �t)t = �t(1� �t)wt

t = �twt:

Thus such a scheme perfectly insures the people that don�t work. Obviously the viability of
such a transfer scheme depends crucially on the absence of so-called moral hazard problems.
If people with a job could credibly misrepresent their situation and pretend not to have a job,
they have every incentive to do so, because then they would not have to work and still receive
the same consumption, on account of the insurance. Thus we need to, implicitly, assume that
either people are honest or can be monitored at no cost.
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Chapter 10

Stochastic Technology
Shocks: The Full RBC
Model

So far our economy does not display any cyclical �uctuations. Now we introduce
exogenous shocks to the production technology parameter At; which we now
allow to vary over time (over and above deterministic growth in productivity
considered above).

10.1 The Basic Idea

The basic idea is the following. Suppose that in every period At can take the
value Al or Ah; and does so with probability 1

2 : Thus the average productivity
equals �A = 1

2 (Al +Ah) : Remember that our production function takes the form
(again for simplicity we abstract from economic growth for the exposition)

yt = Atk
�
t l
1��
t :

Thus if current TFP is high, output will be high even if all production inputs
stay the same. In addition we saw in the previous chapter that households
(or the social planner) will optimally respond to a temporarily higher TFP by
working harder, increasing production even further. The reverse logic applies
to a negative productivity shock, At = Al: The economy starts to display �uc-
tuations that look like business cycles, driven by shocks to TFP At and further
propagated by the endogenous response of labor supply. This is the basic idea
of real business cycle theory.
There is still one obvious shortcoming. In the data we saw that business

cycles were very persistent: good times were more likely followed by further
good times than by bad times. With technology shocks where the probability of
good and bad shock is independent of its past realization the model has a hard
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time generating persistence. Why? Because after a good shock At = Ah today
tomorrow�s shock is as likely to be good as bad. Labor supply simply responds
to the current technology, so will not generate higher output tomorrow either.
And �nally, what is the dynamics of the capital stock? Investing in the capital
stock today (i.e. increasing investment) only results in a higher capital stock
to be used in production tomorrow. But tomorrow At+1 is as likely to be high
as it is low, and therefore the social planner (or private households) have no
particularly strong motive to invest if today�s shock is high. Thus there is no
persistent e¤ect on output due to higher capital accumulation either.1

Thus researchers in the RBC literature specify the TFP shocks not as in-
dependent over time (the probability of At+1 = Ah does not depend on the
realization of At), but rather as a positively correlated process. If At = Ah then
the probability of At+1 = Ah is higher than if At = Al: With this formulation
one gets persistence of business cycles via two channels

� Output tomorrow will be higher if today�s shock is good because tomor-
row�s shock is likely to be good as well.

� Looking forward, the planner today knows that if today�s shock is high it
is good to invest in the capital stock today because the investment today
results in a higher capital stock tomorrow and that capital stock tomorrow
is very productive because TFP is likely to be high tomorrow.

There is one drawback, however, from the formulation of technology shocks
as persistent. We argued above that the labor supply response to a temporarily
favorable TFP shock ampli�es the business cycle in the model. But the current
labor supply response will be smaller if the TFP shock is persistent because with
a positive TFP shock today it is not only a good time to work harder today, but
also very likely to be a good time to work tomorrow as well. Thus the increase
in labor supply is smaller compared to a situation where productivity is as likely
to be low or high tomorrow if is high today.

10.2 Specifying a Process for Technology Shocks

In the light of the previous discussion researchers specify the process for TFP as
a persistent process. It is also common to allow for more than just two possible
realizations of the technology shock; that is, instead of At 2 fAl; Ahg an entire
range of At is permitted.
Concretely, with the production function given as

yt = Atk
�
t l
1��
t

1There may be a small income e¤ect: higher TFP today increases output and part of that
increased output will be used for higher future consumption. The way to do this in this model
is to increase saving via higher capital accumulation, creating a little bit of persistence. But
as we will see below this e¤ect is quantitatively insu¢ cient to generate business cycles of
su¢ cient persistence..
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we specify

At = Aezt with (10.1)

zt = �zzt�1 + "t (10.2)

where "t is a random shock, drawn in every period from the same normal distri-
bution with zero mean and variance �2z: Shocks in di¤erent periods are assumed
to be independent, so that, technically speaking, f"tg1t=0 is a sequence of iid
normally distributed random variables. The number �z is a parameter that
measures how persistent the technology shock is, that is, how important the
past productivity shock for determining how big it is today. Finally A is the
average productivity level.
At �rst this formulation seems puzzling, but simply take logs of (10:1) to

obtain

log(At) = log(A) + zt

log(At)� log(A) = zt

That is, zt is the (log-)deviation of the actual productivity level from its average.
Before analyzing the model with technology shocks we �rst want to collect

some important properties of the process (10:2): From basic time series econo-
metrics we recall that this process is called an autoregressive process of order 1,
because the value of zt only depends on the value in the last period, zt�1 and
an iid shock. We assume that the process starts o¤ with z�1 = 0; alternatively
we could assume it started in the in�nite past, in which case the initial value
does not matter.
We are interested in the expectation and the variance of zt: There are two

di¤erent ways to measure this, depending on the time at which expectation and
variance are taken. We call the unconditional expectation of zt the expectation
of zt at time 0: The only thing we have observed at that point is z�1 = 0: By
E0(zt) denote this unconditional expectation. Similarly denote by

V ar0(zt) = E0

h
(zt � E0(zt))2

i
the unconditional variance of zt: More important for our purposes are the con-
ditional expectation and variance, conditional on information available at the
end of period t � 1: We denote these by Et�1(zt) and V art�1(zt): The condi-
tional expectations and variance are easy to derive. Remember that at the end
of period t� 1 we know zt�1 and thus

Et�1(zt) = Et�1 [�zzt�1 + "t]

= Et�1 [�zzt�1] + Et�1 ["t]

= �zzt�1 + 0 = �zzt�1

since the shock "t has a zero mean. In addition

V art�1(zt) = V art�1 [�zzt�1] + V art�1("t)

= �2z
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since at the end of period t � 1 the term �zzt�1 is known and thus has zero
variance.

From these results we observe the following: when the households (or the
social planner) make decisions in period t � 1 after having observed zt�1 they
need to form expectations about TFP in period t; because this is important
for them for deciding how much to invest and to work, since zt determines how
productive their labor and capital will be in period t: Now we see the importance
of the persistence parameter �z: If �z = 0; then the best estimate of zt at the
end of period t�1 is 0 no matter what TFP is in period t�1: This was the case
discussed in the previous section. If, on the other hand �z is close to one, the best
guess of productivity for period t is that it remains at the level of the previous
period. Then, if TFP is high today it is a great time to invest since the newly
purchased capital will likely be very productive tomorrow. The parameter �z
measures how risky TFP is and thus may control the extent to which households
or the social planner want to accumulate capital for precautionary reasons. But
since our linearization techniques cannot capture this e¤ect I do not want to
discuss it further. The size of �z will also inform us how big the technology
shocks are that we will feed into the model when we simulate it.2

10.3 Analysis

We now want to analyze the model with technology shocks. We will be a bit
casual when dealing with the stochastic shocks and the expectation operator
dealing with these shocks, since doing this very formally would require a host
of additional notation. The �nal outcome of our analysis is however, perfectly
correct, subject to the usual approximation error one makes when employing
linearization techniques.

Again we will restrict attention to the social planner problem since the wel-
fare theorems go through completely unchanged and we can easily make the
social planner solution into a competitive equilibrium. The social planners prob-

2 It is somewhat more tedious to compute the unconditional expectation and variance of
zt; but we �nd

E0(zt) = 0

V ar0(zt) = �2
tX

�=0

and �nally, if the economy starts at t = �1

Corr(zt; zt�1) =
Cov(zt; zt�1)

Std(zt)Std(zt�1)
= �z

and thus we see that also formally �z measures the correlation between zt and zt�1:
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lem reads as

max
fct;kt+1;ltgTt=0

E0

TX
t=0

�t [u(ct)�  lt]

subject to

ct + kt+1 � (1� �)kt = Aeztk�t l
1��
t

zt = �zzt�1 + "t

ct � 0; lt 2 [0; 1] and k0 > 0 given

This problem is almost identical to the one without technology shocks. The
only di¤erence is that now the production function is subject to technology
shocks whose stochastic process needs to be speci�ed, and that now expected
lifetime utility is being maximized. Note that the resource constraint has to
hold under every possible realization of the TFP shock, not just in expectation.
The �rst order conditions look almost exactly like the ones without uncer-

tainty. In particular, the intra- and intertemporal optimality conditions become

(1� �)Aezt
�
kt
lt

��
=

 

u0(ct)

and

u0(ct) = �Et

(
u0(ct+1)

"
�Aezt+1

�
lt+1
kt+1

�1��
+ (1� �)

#)
where Et denotes the conditional expectation.3 The key di¤erence to the case
without technology shocks is that now the Euler equation contains an expec-
tation, since at time t when the decision about kt+1 is made the shock zt+1 is
not yet known and the social planner has to form expectations about it when
choosing kt+1: Expectations are rational in the sense that the stochastic process
the social planner (or the households) perceives coincides exactly with the true
stochastic process governing zt: Also note from the resource constraint that since
output yt+1 is random (because zt+1 is random) consumption ct+1 is random
as well, so the expectation is not only to be taken with respect to zt+1; but also
with respect to ct+1 (and also with respect to lt+1; which is stochastic as well).
The procedure to solve for the optimal policy functions is the same as in

the nonstochastic case: log-linearize the intra- and intertemporal optimality
conditions around its steady state (with the shocks zt = 0; this is called the
deterministic steady state and coincides with the steady state of the determin-
istic model), the resource constraint and the equation governing the zt-process,
stick it into the software package and let the program solve for policy functions.
There is one crucial di¤erence to the nonstochastic case. In that case the current
state of the economy was completely determined by the current capital stock,

3 It would lead us too far astray to explicitly derive the intertemporal Euler equations in
the case of uncertainty, so here I ask you to let me proceed on faith.
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but now one also needs to know the current shock zt; because the shock is a
crucial part in determining current output. Thus the policy functions take the
form

k̂t+1 = kzt + skk̂t

ĉt = czt + sck̂t

l̂t = lzt + slk̂t

where (k; c; l) and (sk; sc; sl) are the numbers the software is determining
for you. Note that the steady state value of zt is z� = 0 and thus we write the
policy functions as functions of zt and not ẑt:
In order to determine the optimal policy functions and simulate the model

we need to pick the parameter values governing the process for zt; that is,
we need to choose �z and �z: Since we want to ask whether our model can
generate business cycles of realistic magnitude for empirically reasonable choices
of �z; �z; we cannot just make them out according to our liking, but rather want
to determine them from the data. The procedure for doing so is described next.

10.4 What are these Technology Shocks and How
to Measure Them?

Output in the model is produced according to the production function

yt = Atk
�
t

h
(1 + g)

t
lt

i1��
Taking logs we �nd

log(yt) = log(At) + � log(kt) + (1� �) log(lt) + (1� �)t log(1 + g)
log(At) = log(yt)� � log(kt)� (1� �) log(lt)� (1� �)t log(1 + g)

Since we can measure yt,lt, kt and g (the long run growth rate of GDP per capita)
from the data (measuring the real capital stock is not entirely straightforward),
we can, conditional on having picked a value for �; construct a time series for
log(At): The variable At or log(At) so determined from the data is called the
Solow residual and measures our infamous technology shocks in the data.
Now remember that

log(At)� log(A)
= zt = �zzt�1 + "t

= �z (log(At�1)� log(A)) + "t

and thus
log(At) = (1� �z) log(A) + �z log(At�1) + "t

Thus with data on flog(At)g we can run the regression

log(At) = �1 + �2 log(At�1) + "t
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and take the OLS estimate �̂2 as our estimate for �z: Denoting the regression
residuals as

"̂t = log(At)� �̂1 � �̂2 log(At�1)

we obtain as estimate for �2z

�̂2z =
1

T

TX
t=0

"̂2t

Note that as before the constant A is simply a normalization of units. If one
carries out this exercise with American quarterly data one obtains �z = 0:95
and �z = 0:007.
Now we are ready to deduce the quantitative business cycle properties of our

model. Before doing this in the results section below, we �rst want to discuss
what these technology shocks could represent in the real world? Everything
that e¤ects the productivity of inputs in our economy. Positive shocks could
represent the advent of new ideas of production, new technologies, good weather
and so forth, negative shocks could represent oil price shocks, terrorist attacks
and many other things that reduce total factor productivity below its long run
growth trend (as given by the term (1 + g)t(1��)).
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Part III

Evaluating the Model

85
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In the previous part we collected all the necessary ingredients to use our
model for business cycle analysis. In this part we will derive the quantitative
properties of the model, with the use of computational techniques. We �rst
derive and describe the basic quantitative properties of the model. We then
try to disentangle how much of the business cycles resulting from this model is
due to the exogenous shocks hitting the technology, and how much of is due to
the endogenous response of households and �rms (adjusting their labor supply
and investment decisions). Once we have a satisfactory model of business cycles
we ask to important applied questions. First, how costly are business cycles,
that is, how much would citizens of a society gain if they could get rid o¤
business cycles. This question is silent about how one possibly would achieve
getting rid of business cycles. The last part of these notes then explores to
what extent economic policy (monetary and �scal policy) is suited to reduce or
abolish business cycles, and whether it is in fact desirable to do so.
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Chapter 11

Technology Shocks and
Business Cycles

In this chapter we will document the basic business cycle properties of the
RBC model, calibrated in the way described above. We will use two basic
ways to summarize the predictions of the model, impulse response functions
and summary statistics from simulations of the model.

11.1 Impulse Response Functions

The state variables of the Hansen model are the capital stock at the beginning of
the period, kt; and the current technology shock zt: We now show how a shock
to the current capital stock and the current technology level a¤ect the optimal
choices of the social planner (or equivalently, private households and �rms). The
thought experiment is the following: suppose the economy is at its deterministic
steady state and all of a sudden the current capital stock increases by 1% in
period 0: It is assumed that current and future technology shocks are at their
mean, that is, zt = 0 for all t: The impulse response functions trace out how
the endogenous variables of the model (that is, capital in future periods, labor,
consumption, output and investment) respond to the shock to the capital stock
the economy comes into the current period with. We �rst observe from Figure
11.1 that in period 0; by construction, only the capital stock goes up, by 1%: In
response investment strongly declines, because the capital stock is higher than
optimal (note that we shock the capital stock, and do not assert that the increase
in the capital stock is in any sense optimal). The decline in current investment
leads, over time, to a reduction of the capital stock back to the deterministic
steady state. The exogenous increase in the capital stock makes the economy
wealthier. In response current consumption and leisure increase. However, it
is optimal not to consume this additional output entirely in the current period,
but rather to smooth the consumption increases over time. Thus consumption
and leisure are not only higher in the period after the increase in the capital
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Figure 11.1: Impulse Response Function for the Hansen Model, Shock to Capital

stock, but persistently higher, and only come back slowly to the steady state
over time. Finally, output slightly increases due to the increase in the capital
stock. This e¤ect is mitigated by the decline in labor supply, making the overall
output response modest.
More important for understanding the business cycle properties of the model

is the response of the model to a technology shock, the source of business cycles
in our model. Again we assume that before period 0 the economy is in the
deterministic steady state, and then at period 0 there is a positive technology
shock, in the size of one standard deviation, that is z0 = �z: After this shock the
technology by assumption is not hit by further shocks,and thus the technology
level follows the process

zt = �zt�1:

We see from Figure 11.2 that the technology shock jumps up in period 0; and
then geometrically declines back to its steady state level z = 0: This is com-
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Figure 11.2: Implulse Response for the Hansen Model, Technology Shock

pletely by construction, and there is nothing surprising or endogenous about
this. The key question is how the endogenous variables of model, capital, con-
sumption, consumption etc. respond to the technology shock.
The most signi�cant response is in private investment, which on impact

increases by almost 8% on impact. An increase in technology makes capital
more productive in the future, since future technology is expected to be higher
(note that � is close to 1): The social planner responds optimally by immediately
building up the capital stock. Labor supply also responds positively to the
increase in productivity, albeit not as strongly as investment. Consequently
output increases by more than the technology shock: this is the intertemporal
substitution of labor supply. Consumption also increases, albeit very little, on
impact. The small increase in consumption is due to the fact that it is optimal to
devote a lot of the extra production to investment to reap the bene�ts of higher
productivity in the future. Over time investment declines back to the steady
state quite quickly, but consumption remains high for a much longer time, fueled
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by the now higher capital stock and the higher productivity. Eventually the
technology level gets back to the steady state, and so do output, consumption,
the capital stock and labor.
The key observations from the impulse response analysis for business cycles

is the very strong response of investment on impact of the technology shock,
the positive labor supply response, the persistent e¤ect on output due to the
persistence of the technology shock and the increase of the capital stock. These
properties of the policy functions will translate into the business cycle properties
of the model. These properties we will now document by simulating the model
and then comparing the simulated time series from the model to the business
cycle statistics from the data.

11.2 Comparing Business Cycle Statistics of Model
and Data

Once we have the policy functions we can easily simulate the model. Start
with an initial condition for the capital stock, say the steady state level, so that
k̂0 = 0; and with an initial condition for z; say z0 = 0: Then draw a sequence
of technology shocks1 f"tgTt=0 and construct fztgTt=1 from the equation

zt = �zzt�1 + "t

Once we have the initial condition k̂0 = 0 and the technology shocks zt; we can
use the policy functions delivered from the software

k̂t+1 = kzt + skk̂t

ĉt = czt + sck̂t

l̂t = lzt + slk̂t

to determine time series fk̂t+1; ĉt; l̂tgTt=1 and thus of course time series for
fkt+1; ct; ltgTt=1: Now that we arti�cial data from the model, we can compute
exactly the same statistics as we did form the real data. The model is deemed
to be a good model of business cycles if the statistics from the model match up
favorably with those from the data.
In table 11.1 we summarize the basic business cycle properties of the model,

and, as comparison, of the data, from table 2.1.

We observe that the model is able to generate output volatility of the same
magnitude as found in the data. In addition, the persistence of business cycles
in the model is comparable to that in the data, although the persistence in the
model is somewhat lower than that in the data. Figure 11.3 shows a simulation

1Drawing a seqeunce of independent, normally distributed random variables is a fairly
standard problem for which reliable software exists. The resulting numbers are however, only
pseudo-random numbers, that is, they are generated according to a deterministic function, but
look like random numbers. If you are interested in the mathematical details, I have further
references for you.
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Variable Mean St. Dv. A(1) A(2) A(3) A(4) A(5)
Data 0% 1:7% 0; 84 0; 60 0; 32 0; 08 �0; 10
Model 0% 2:1% 0; 72 0; 42 0; 16 �0; 05 �0; 21

Table 11.1: Business Cycles: Data and Model
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Figure 11.3: Simulated Data from the Hansen Model

of the model for 40 periods, whose summary statistics (for a simulation of longer
length) are displayed in table 11.1. The most outstanding fact from the simu-
lation is the high volatility of investment. This is not a surprise, but shows up
already in the impulse response function 11.2. In addition, the high volatility of
investment is a salient fact of business cycles in the data: investment demand
is by far the most volatile component of GDP.
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11.3 Counterfactual Experiments

Set �z = 0
Make �z smaller
Change utility function for leisure



Part IV

Welfare and Policy
Questions
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[Next version of these notes]
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Chapter 12

The Cost of Business Cycles
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