
Chapter 2

TWO-PERIOD INTERTEMPORAL DECISIONS

The decisions on consumption and savings are at the heart of modern macroeco-

nomics. This decision is about the trade-o® between current consumption and future

consumption. In this section we describe the necessary techniques for solving such

an intertemporal problem.

2.1 An Analogy in Atemporal Choices

To begin, we consider a more familiar decision problem analyzed in intermediate mi-

croeconomics { the consumption decision between two goods, say, apples and oranges,

at the same date. This is an atemporal decision problem. The standard approach to

this problem begins with three elements:

(i) The consumer is assumed to have a preference ordering over these two goods,

represented by a utility function u(cA; cO), where cA and cO are the amount

of consumption of apples and oranges, respectively. For illustration, let us use

the Cobb-Douglas form of the utility function, u(cA; cO) = (cA)®(cO)1¡®, where

® 2 (0; 1).

(ii) The consumer takes the relative price between these two goods as given. The

relative price of oranges to apples is denoted p.

(iii) The consumer's budget for these two goods is ¯xed. Let this budget be y,

expressed in terms of apples.

With these elements, the consumer's consumption choices, (cA; cO), are the

solution to the following maximization problem:

(P1) max
(cA;cO)

(cA)
®(cO)

1¡® (2.1)
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subject to the budget constraint:

cA + pcO · y: (2.2)

In intermediate microeconomic textbooks, the solution to this problem is il-

lustrated in a two-dimensional diagram like Figure 2:1. On the horizontal axis is the

level of consumption of apples and on the vertical axis is the level of consumption of

oranges. The straight, negatively-sloped line is the budget line cA + pcO = y. The

shaded region is the feasibility region. Any bundle of the two goods in this region can

be a®orded by the consumer under the budget y and any bundle outside the region

is not feasible. The curves that are convex to the origin are the indi®erence curves.

Figure 2:1 exhibits three such curves, which correspond to ¯xed utility levels u1, u2,

and u3, respectively. An indi®erence curve, u(cA; cO) = ui, describes all possible com-

binations of consumption of the two goods that yield the same utility level ui, some

of which may not be feasible. When the indi®erence curve is further up northeast, it

generates higher utility. For example, u3 > u2 > u1.

    cO

u(cA,cO)=u3

    E u(cA,cO)=u2

        F
u(cA,cO)=u1

cA+pcO=y

  0        cA

Figure 2:1:

The solution to the above consumption decision problem is point E in Figure

1, where the indi®erence curve is tangent to the budget line. The optimal solution

does not lie on the indi®erence curve u(cA; cO) = u3 because the consumption bundles
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on this indi®erence curve are not feasible, i.e., they require a budget higher than y.

Similarly, points on the indi®erence curve u(cA; cO) = u2 which are di®erent from E

are infeasible. Some consumption bundles on the indi®erence curve u(cA; cO) = u1,

such as point F , are feasible, but there are not the optimal choice because they

generate lower utility than point E.

The optimal solution represents the best trade-o® between consumption of

the two commodities under the given relative price. If the agent tries to consume a

little bit more apples and fewer oranges than this optimal bundle within the same

budget, the consumption point will slide down slightly southeast along the budget

line in Figure 2:1. This new consumption bundle will be strictly below the indi®erence

curve u(cA; cO) = u2 and so it generates a lower utility level than the optimal bundle

E. Similarly, if the consumer tries to consume a bit more oranges and a bit fewer

apples within the same budget, the consumption bundle slides up northwest along

the budget line, again yielding a lower utility level.

2.2 A Two-Period Model

The intertemporal consumption decision can be analyzed in a way very similar to the

above atemporal problem. Rather than choosing between consumption of di®erent

goods at the same date, the consumer now chooses between consumption at di®erent

dates. To simplify the illustration of this intertemporal problem, let us assume that

the consumer lives only for two periods, date 0 and date 1, and that the goods

consumed at di®erent dates are physically the same. The consumption level is c0 at

date 0 and c1 at date 1. We start with three elements that are similar to those in the

atemporal problem.

(i) The consumer is assumed to have a preference ordering over consumption at the

two dates, represented by a utility function u(c0; c1). Since such a utility index

involves consumption at di®erent dates, we call it the \intertemporal utility

function".

(ii) The consumer takes the gross real interest rate, R, as given.

(iii) The consumer's budget at date 0 is y, expressed in terms of date 0 goods. To

simplify, assume that the only source of income for the consumer at date 1 is

the income from savings at date 0.
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At date 0, the consumer chooses the consumption level, c0, and the amount of

savings, which is denoted s0. Savings are in the form of consumption goods at date 0

and so it has the same price as consumption goods at date 0. The consumer's budget

constraint at date 0 is

c0 + s0 · y: (2.3)

At date 1, the consumer chooses the consumption level, c1. The income in this

period is the income from savings at date 0. Since each unit of consumption goods

saved at date 0 yields R units of consumption goods at date 1, the consumer's income

at date 1 is Rs0. The budget constraint at date 1 is

c1 · Rs0: (2.4)

Example 1 In the story of Robinson Crusoe, Crusoe found a ¯xed quantity of corns

on the deserted island and faced the decision of how much of the corns to consume.

Crusoe's problem is similar to the one described above. The initial endowment of

corns serves the role of y in the above constraints. If he eats all the corns, he cannot

consume any the next year. If he saves some corns and sow them as seeds, he can

obtain new corns next year. The seeds are capital, although they have the same

physical form as the consumption good.

The consumer's consumption decisions in the two periods are the solution to

the following maximization problem:

max u(c0; c1) subject to (2.3) and (2.4).

In contrast to the atemporal decision problem, this intertemporal maximiza-

tion problem has two budget constraints, one for each period. This di®erence, how-

ever, is super¯cial. We can easily transform the intertemporal problem into exactly

the same form as the atemporal problem. As a reasonable assumption, we can assume

that the consumer is happier if his/her consumption is higher. (Later we specify ex-

plicitly the assumptions on u.) In this case the consumer will never throw any part of

his/her income away at date 1. So, (2.4) holds with equality. Substituting s0 = c1=R

into (2.3), we obtain:

c0 +
1

R
c1 · y: (2.5)

The intertemporal problem can thus be rewritten as

(P2) max u(c0; c1) subject to (2.5).



A Two-Period Model 13

This problem has the same mathematical form as the atemporal problem (P 1). The

budget constraint, (2.5), is called the intertemporal budget constraint.

    c1

u(c0,c1)=u3

    E u(c0,c1)=u

  c0+c1/R=y

  0        c0

Figure 2:2:

The similarity between the two decision problems allows us to emphasize two

aspects of an intertemporal decision problem:

² In the atemporal problem the two goods at the same date are substitutes and

the optimal decision is such a bundle at which further substitution between the

two goods does not increase utility. In the intertemporal problem the trade-

o® between current consumption and savings is a trade-o® between current

consumption and future consumption. That is, the consumer can substitute

consumption across periods. We call this substitution the \intertemporal sub-

stitution". The optimal intertemporal decision is such an allocation (c0; c1) that

further substitution between consumption at the two dates does not increase

intertemporal utility.

² In the atemporal problem, p is the relative price of oranges to apples at the
same date. In the intertemporal problem the relative price of date 1 good to

date 0 good is 1=R. That is, the gross real interest rate is the relative price of

date 0 good to date 1 good. This is the intertemporal price. It is not one if the
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net real interest rate is positive, although the two goods have the same physical

form.

We can draw Figure 2:2 to depict the problem (P2). The straight, negatively-

sloped line is the equality form of the intertemporal budget constraint, the shaded

area is the feasibility set, the convex curve is a particular indi®erence curve, and point

E is the solution. The budget line is also called the feasibility frontier.

For the solution to exist and to be unique, as in Figure 2:2, the indi®erence

curve must be decreasing and convex. This requires the utility function to satisfy cer-

tain conditions. To elaborate, consider ¯rst the example with u(c0; c1) = (c0)
®(c1)

1¡®,

where ® 2 (0; 1). In this example, for any ¯xed utility level u the indi®erence curve
is (c0)®(c1)1¡® =u. That is,

c1 = (¹u)
1

1¡® (c0)
¡ ®
1¡® : (2.6)

This indi®erence curve expresses c1 as a decreasing function of c0, a feature illustrated

in Figure 2:2. That is,

dc1
dc0

¯̄̄̄
¯
u=u

= ¡ ®

1¡ ®(u)
1

1¡® (c0)
¡ ®
1¡®¡1 < 0;

where we use the symbol (:)ju=u to emphasize the fact that the indi®erence curve
¯xes the utility level at some level u. The indi®erence curve is also a convex function,

as illustrated in Figure 2:2. That is,

d2c1
dc20

¯̄̄̄
¯
u=u

=
®

1¡ ®
µ

®

1¡ ® + 1
¶
(u)

1
1¡® (c0)

¡ ®
1¡®¡2 > 0:

For a general utility function u(c0; c1), we cannot express c1 as a function

of c0 explicitly as in (2.6). Nevertheless, we can ¯nd conditions under which the

indi®erence curve has the shape in Figure 2:2. First, di®erentiating the de¯nition of

the indi®erence curve u(c0; c1) =u, we have

(u1dc0 + u2dc1)ju=u = 0;

where ui is the derivative of u(c0; c1) with respect to its ith argument/variable (i =

1; 2). From this we can solve for the slope of the indi®erence curve at the allocation

(c0; c1) as
dc1
dc0

¯̄̄̄
¯
u=u

= ¡u1
u2
:
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As a reasonable assumption, we require utility to increase with the amount of con-

sumption, i.e., the more the better. This requires u1 > 0 and u2 > 0. This assumption

also ensures that the indi®erence curve is downward sloping at any allocation (c0; c1).

Second, we ¯nd the curvature of the indi®erence curve by totally di®erentiating

the slope of the indi®erence curve:

d2c1
dc20

¯̄̄̄
¯
u=u

=
1

u22

24u1
0@u12 + u22 dc1

dc0

¯̄̄̄
¯
u=u

1A¡ u2
0@u11 + u12 dc1

dc0

¯̄̄̄
¯
u=u

1A35 :
In this expression, uij is de¯ned as uij ´ @2u=(@ci@cj) for i; j = 1; 2. Substituting

the derivative dc1=dc0, we have

d2c1
dc20

¯̄̄̄
¯
u=u

= ¡ 1
u32

³
u22u11 + u

2
1u22 ¡ 2u1u2u12

´
:

The indi®erence curve is convex, as drawn in Figure 2:2, if and only if the above

derivative is positive, i.e., if and only if

u22u11 + u
2
1u22 ¡ 2u1u2u12 < 0: (2.7)

This feature of the utility feature is called quasi-concavity.

Finally, we need the marginal utility to be a decreasing function of consump-

tion. That is, as consumption at a date increases and consumption at the other date

remains ¯xed, the increment in utility diminishes. This requires u11 < 0 and u22 < 0.

We can summarize the assumptions as follows, which we maintain throughout

our analysis:

Assumption 1 The utility function u(c0; c1) satis¯es the following conditions:

(i) Positive marginal utility: u1 > 0 and u2 > 0.

(ii) Diminishing marginal utility: u11 < 0 and u22 < 0.

(iii) Quasi-concavity: u22u11 + u
2
1u22 ¡ 2u1u2u12 < 0.

Quasi-concavity corresponds to the convexity of the indi®erence curves and

hence is necessary for the uniqueness of the solution to the maximization problem. It

is di®erent from the common concept of concavity when a function has two or more

arguments. A function u(c1; c2) is concave jointly in (c0; c1) if for any two consumption

programs C = (c0; c1) and C¤ = (c¤0; c
¤
1), and any ® 2 (0; 1), the function u satis¯es
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u(C®) > ®u(C¤)+(1¡®)u(C), where C® ´ ®C¤+(1¡®)C. This concavity condition
can be rewritten as¤

u11u22 ¡ u212 > 0: (2.8)

It is easy to verify that concavity implies quasi-concavity. But the reverse is not true,

as shown in the following exercises.

Exercise 2.2.1 The utility function u(c0; c1) = (c0)
®(c1)

1¡®, where ® 2 (0; 1), satis-
¯es Assumption 1. Show that this utility function is not concave in (c0; c1) jointly.

Exercise 2.2.2 The function, u(c0; c1) = [®c
½
0 + (1¡ ®)c½1]1=½, where ® 2 (0; 1) and

½ < 1, is called the utility function with a constant elasticity of substitution between

c0 and c1 (CES for short). Show that the CES function is quasi-concave but is not

concave in (c0; c1) jointly.

A special type of intertemporal utility function is the following:

u(c0; c1) = U (c0) + ¯U(c1); ¯ > 0; (2.9)

This intertemporal utility function assumes that the consumer derives utility from

consumption in each period separately and that intertemporal utility is a weighted

sum of the utility levels in the two periods. This type of intertemporal utility function

is called the time-additive utility function. The relative weight of future utility to

current utility, ¯, is called the discount factor. The discount rate is 1
¯
¡ 1.

Exercise 2.2.3 Show that the time-additive utility function satis¯es Assumption 1

if and only if U 0 > 0 and U 00 < 0.y

¤To see why (2.8) is necessary for concavity, let ¢0 = c¤0 ¡ c0 and ¢1 = c¤1 ¡ c1. Then, C¤ =
(c0 + ¢1; c1 + ¢) and C® = (c0 + ®¢0; c1 + ®¢1). Consider the function f(¢0;¢1) ´ u(C®) ¡
[®u(C¤) + (1 ¡ ®)u(C)]. If u is concave, then f(¢0;¢1) > 0 for all (¢0;¢1), and certainly for
su±ciently small (¢0;¢1). Note that f(0; 0) = 0 and f1(0; 0) = f2(0; 0) = 0. Using Taylor
expansion to expand f(¢0;¢1) around (0; 0) and ignoring the terms close to zero, we have:

f(¢0;¢1) = ¡®
2
(1¡ ®)[u11¢20 + 2u12¢0¢1 + u22¢21];

where the derivatives u11; u12 and u22 are all evaluated at (¢0;¢1) = (0; 0). For f(¢0;¢1) > 0
around (¢0;¢1) = (0; 0), it is necessary and su±cient that u11¢

2
0 + 2u12¢0¢1 + u22¢

2
1 < 0. This

condition is equivalent to that the matrix

µ
u11 u12
u12 u22

¶
be negative de¯nite, i.e., u11 < 0, u22 < 0

and u11u22 ¡ u212 > 0.yWhen a function has only one argument, we often use 0 to denote the ¯rst-order derivative and
00 the second-order derivative of the function with respect to that argument.
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2.3 The Lagrangian Method

The diagrammatic approach in the last section is often inadequate for macroeconomic

analysis. We need to ¯nd the conditions that determine the solution of the maximiza-

tion problem. To solve (P 2), there are a few methods. All of them use the following

idea:

If (c¤0; c
¤
1) is the optimal intertemporal consumption allocation, then intertemporal

utility cannot be increased by any other feasible allocation.

The most common way to implement this idea is the Lagrangian method,

which has the following steps:

Step 1. Rewrite the intertemporal budget constraint by moving all terms to one side

of the condition and express the condition in the form with \¸". For (2.5) this
step generates y ¡ c0 ¡ c1=R ¸ 0.

Step 2. Multiply the left-hand side of the rewritten budget constraint by a multiplier,

say ¸, and add this term to the objective function of the maximization problem.

This creates

L ´ u(c0; c1) + ¸
µ
y ¡ c0 ¡ c1

R

¶
: (2.10)

Step 3. Take the derivatives of the above function with respect to c0 and c1. For

the consumption choices to be optimal, such derivatives are zero except for

some special cases discussed below. Setting the derivatives to zero we obtain

the ¯rst-order conditions of the maximization problem. The solution to these

¯rst-order conditions is the solution to (P2).

Step 1 is self-explanatory. Step 2 combines the intertemporal budget constraint

with the objective function of the maximization problem. The multiplier ¸ is called

the Lagrangian multiplier. In the current case it is also called the shadow price of

income at date 0, measured in terms of date-0 utility. This price measures how much

date-0 utility a marginal unit of income can bring. It is the \shadow" price because

it is not a price typically observed in the market. The function L in (2.10) is the
Lagrangian of the original maximization problem. In Step 3, we take ¸ as given and

maximize L by choosing c0 and c1.
For general forms of the utility function, the choices c0 and c1 that maximize

L are given by the following ¯rst-order conditions:
@L

@c0
= u1 ¡ ¸ · 0; = 0 if c0 > 0; (2.11)
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@L

@c1
= u2 ¡ ¸=R · 0; = 0 if c1 > 0; (2.12)

and the requirement:

¸ (y ¡ c0 ¡ c1=R) = 0: (2.13)

Eq. (2.11) states that the net marginal gain in utility from increasing c0 should be

zero if c0 is positive, and non-positive if c0 is zero. Eq. (2.12) states a similar condition

for c1. Eq. (2.13) is a more general form of the intertemporal budget constraint. It

states that the budget constraint holds with equality if the shadow price of income is

positive and that the only case where the budget constraint holds with inequality is

when the shadow price of income is zero.

The optimal choice of c0 (or c1) can be positive or zero. When the optimal

choice of c0 is positive, (2.11) holds with equality, in which case the solution is an

\interior solution". The equality form of (2.11) requires the optimal choice of c0 to

equate the marginal bene¯t and the marginal cost of c0. The marginal bene¯t of c0

is the marginal utility, u1. The marginal cost of c0 is equal to the shadow price of

income, ¸, because each unit of increase in c0 entails an equal amount of income.

To see why the optimal choice of c0 must satisfy this condition, suppose counter-

factually that u1 > ¸. Then, if the consumer \pays" ¸ units of utility to get a

marginal unit of income and use it to increase consumption c0, he will obtain u1 units

of utility from the additional income. The net gain in utility is (u1 ¡ ¸) > 0. This
means that the original consumption level is too low to be optimal. The consumer

can keep increasing utility by increasing consumption. As consumption increases,

marginal utility of consumption decreases and eventually is equal to the marginal

cost of consumption. This is the level at which further increases in consumption do

not generate positive net utility. Similarly, if u1 < ¸, the consumption level is too

high and the consumer can increase utility by reducing consumption until net utility

(u1 ¡ ¸) becomes zero at some optimal level c¤0 (if c¤0 > 0).
It is possible that optimal consumption is zero, i.e., the constraint c0 ¸ 0

binds, in which case the solution is a \corner solution". This happens when net utility

(u1 ¡ ¸) is negative even when c0 is reduced all the way to 0. Since consumption
must be non-negative, the choice c0 = 0 is the optimal choice in this case and so the

condition (2.11) holds with inequality. The following exercise provides an example.

Exercise 2.3.1 Assume that u(c0; c1) = ln(c0+A)+ln c1 and that y < A. Show that

this utility function satis¯es Assumption 1 but the optimal choice of c0 is 0.
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To check that the Lagrangian method indeed yields the solution to the original

maximization problem (P2), we show that the choices that maximize the Lagrangian

are indeed the solutions to the original problem. Let (c¤0; c
¤
1) maximize the Lagrangian.

To simplify the illustration, assume c¤0 > 0, c
¤
1 > 0 and so (2.11) and (2.12) hold with

equality. Then ¸ = u0 > 0. Eliminating ¸ from (2.11) { (2.13) we have:

u1=u2 = R; (2.14)

y ¡ c0 ¡ c1=R = 0: (2.15)

Suppose that the choices (c¤¤0 ; c
¤¤
1 ) solve the original problem (P2), they must satisfy

(2.14) and (2.15), and so they are equal to (c¤0; c
¤
1). To see this, we solve the original

problem directly. Note that the assumptions u1; u2 > 0 imply that the consumer

will not want to waste any income and so the budget constraint holds with equality.

That is, (c¤¤0 ; c
¤¤
1 ) satisfy (2.15). Using this budget constraint we can write c1 =

R(y¡ c0). Substituting this into the utility function, we write the objective function
as u(c0; R(y ¡ c0)). The optimal choice of c0, c¤¤0 , maximizes this function. The
¯rst-order condition is precisely (2.14).

Remark 1 We have referred to the Lagrangian multiplier as the shadow price of

income. This can be made rigorous by showing that dL=dy = ¸. In fact, if the

consumption pro¯le is chosen optimally, then dL=dy = @L=@y (= ¸). The equality

between the total derivative and the partial derivative of the Lagrangian to income is

called the \envelope theorem".

The direct approach to the original maximization problem, described above,

seems easier than the Lagrangian method. What is the use of the Lagrangian method,

then? The answer is that the Lagrangian method is more general. The Lagrangian

method allows for corner solutions to the maximization problem and is applicable

to maximization problems that have complicated constraints. In the maximization

problem described here, the budget constraint is simple and we can use it to express c1

as a function of c0. In many other problems, however, the direct approach is awkward

because it may not be possible to use the constraints to explicitly express some

variables as functions of other variables. The following exercise gives an example.

Exercise 2.3.2 Let the consumer's utility function u(c0; c1) be strictly increasing in

each argument and quasi-concave in the two arguments jointly. Suppose that the

consumer must incur some \shopping cost" in addition to the costs of goods in order
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to obtain the consumption bundle. The shopping cost, expressed in terms of period-0

goods, is given by a function Á(c0; c1), which is strictly increasing and convex in each

argument. Incorporate this shopping cost into the consumer's intertemporal budget

constraint. Use the Lagrangian method to derive the ¯rst-order conditions of this

problem. Is the marginal utility of consumption in period 0 equal to the marginal

utility of income in this case?

The optimal condition, (2.14), is an important condition. The ratio on the

left-hand side, u1=u2, is called the marginal rate of substitution between current and

future consumption. It measures the household's relative value of current consump-

tion to future consumption, or equivalently, how much the consumer is willing to

pay in future consumption for one unit of increase in current consumption. The real

interest rate acts as the marginal rate of transformation between currency and future

consumption. It is the rate of return to savings, measuring the rate of substitution

between current and future consumption that is available in the market. If the house-

hold's consumption pro¯le (c0; c1) is optimal, then how much the household is willing

to pay to substitute between current and future consumption must be equal to what

the market can provide. Thus (2.14) must hold. If the marginal rate of substitu-

tion is higher than the real interest rate, the return to savings does not compensate

su±ciently the sacri¯ce of current consumption that the household makes. In this

case the household can increase intertemporal utility by reducing savings and increas-

ing current consumption. On the other hand, if the marginal rate of substitution is

lower than the real interest rate, the return to savings exceeds the sacri¯ce of cur-

rent consumption that the household makes. In this case the household can increase

intertemporal utility by increasing savings and reducing current consumption. The

consumption pro¯le (c0; c1) is optimal only when the household does not have any

net gain by increasing or decreasing savings at the margin.

2.4 Determinants of Savings

Once we have obtained the optimal conditions of the maximization problem, we can

use them to address economic issues. This requires us to re-organize the optimal

conditions. How to re-organize the conditions depends on what issues are to be

discussed. Here we discuss the factors that determine optimal savings.

Savings are important for capital formation and economic growth. The simple

two-period model reveals three important determinants of savings: the income pro¯le,
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the rate of return to savings (the real interest rate) and the agent's patience toward

future consumption. Let us interpret the consumer in the two-period model as the

average household in a large economy and so the savings analyzed here are average

savings per household in the economy. To simplify illustrations, we assume that the

household's intertemporal is the time-additive function in (2.9).

2.4.1 A Slightly More General Model

We enrich the two-period model by allowing the household to have income at date

1 in addition to the income from savings. For example, the household might obtain

labor income at date 1. Let y1 be such income. Let y0 now denote the level of income

at the beginning of date 0. Then the household's budget constraint at date 1 is

c1 · Rs0 + y1:
The household's budget constraint at date 0 is (2.3), with y being replaced by y0.

The intertemporal constraint is

c0 +
c1
R
· y0 + y1

R
: (2.16)

The level of savings is s0 = y0¡ c0. To determine the optimal level of savings,
we need to determine the optimal level of consumption at date 0. Thus, we should

¯nd the optimal condition for c0 and replace other variables in such a condition as

functions of c0 whenever it is possible.

The optimal c0 is given by (2.14). Since the intertemporal budget constraint

(2.16) binds (i.e., holds with equality), c1 = y1 +R(y0 ¡ c0). Substituting this for c1
in (2.14) and using the time-additive utility function, we obtain the condition for the

optimal level of c0:
U 0(c0)

U 0(y1 +R(y0 ¡ c0)) = R¯: (2.17)

2.4.2 Income Pro¯le

By the income pro¯le we refer speci¯cally to the household's income derived from

human capital such as the labor income, not counting income derived from savings.

In the current model, the income pro¯le is (y0; y1). To illustrate how the income

pro¯le a®ects savings, assume that the gross real interest rate is R = 1 and that the

household does not discount future utility (i.e., ¯ = 1). In this case the condition for

the optimal level of c0, (2.17), becomes:

U 0(c0) = U 0(y1 + y0 ¡ c0):
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Since the marginal utility of consumption, U 0, is a decreasing function, we must have

c0 = y1+y0¡c0 (= c1). That is, the household consumes the same amount in the two
periods. We call this motive to achieve similar consumption levels in di®erent periods

the \consumption-smoothing motive". Savings are a means to smooth consumption

over time.

    c1

c0+c1=y0+y1

R=β=1

   45 degree line

      c1*      E
u(c0,c1)=u

       y1 A

  0       c0*        y0        c0

Figure 2:3: An uneven income pro¯le
(The case with R = ¯ = 1; y0 > y1):

In the current case we can explicitly solve for the optimal level of savings.

Since c0 = y1 + y0 ¡ c0, then c0 = (y1 + y0)=2. The optimal level of savings is

s0 = y0 ¡ c0 = y0 ¡ y1
2

:

If the household has a °at income pro¯le (and if R = ¯ = 1), the optimal level of

savings is 0; if the household has a rising income pro¯le (i.e., if y1 > y0), the optimal

level of saving is negative; if the household has a declining income pro¯le (i.e., if

y1 < y0), the optimal level of savings is positive. A negative level of savings means

that the household borrows at date 0.

In Figure 2:3 we illustrate the case in which the household has a declining

income pro¯le. The optimal consumption pro¯le (c¤0; c
¤
1) is at point E where the

indi®erence curve is tangent to the intertemporal budget line. In the current case,
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the intertemporal budget line is c0 + c1 = y0 + y1, since R = 1. Because the optimal

consumption pro¯le satis¯es c¤0 = c
¤
1 in the current case, point E lies on the 45

0 line.

The endowment point is point A. The endowment point lies on the intertem-

poral budget line because it is always feasible to consume the entire income in each

period. The endowment point lies southeast of the optimal consumption point be-

cause y0 > y1. Since y0 > c¤0, the level of savings at date 0 is positive.

Exercise 2.4.1 Explain why savings often increase with age when the agent is young

and then decline with age when the agent retires.

Exercise 2.4.2 Explain whether each of the following statements is true, false, or

uncertain:

(i) The low saving rate in the US must indicate that growth in income per capita has

slowed down in the US.

(ii) If households anticipate that the income tax will rise in the future, then they will

increase savings.

2.4.3 Real Interest Rate

The second determinant of optimal savings is the rate of return to savings, i.e., the

real interest rate. To isolate the role of the real interest rate, we assume that the

household does not discount future utility (¯ = 1) and, for the moment, that the

household has a smooth income pro¯le (y1 = y0 = y). In the case, the optimal level

of savings is 0 if the real interest rate is R = 1. Assume, instead, that R > 1.

With ¯ = 1 and y1 = y0 = y, the condition for the optimal level of consumption

c0, (2.17), becomes

U 0(c0) = R £ U 0(y +R(y ¡ c0)):
Unlike the previous case, the optimal consumption levels are di®erent in the two

periods. Given the smooth income pro¯le and no time discounting, a higher real

interest rate entices the household to save more.

Let us illustrate this positive e®ect of the real interest rate on savings in Figure

2:4. Point E is the optimal consumption choice when R = 1 (and y1 = y0, ¯ = 1). At

this point, the optimal level of savings is zero and so the optimal consumption level

in each period is equal to the income level in that period. When the real interest rate

increases from 1 to a number greater than 1, the intertemporal budget line rotates

counter-clockwise around the point of the income pro¯le, i.e., around point E. The

new intertemporal budget line is steeper than the original one and the new optimal
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consumption pro¯le is given by point E0. Since point E0 is above the 450 line, the

household consumes more at date 1 than date 0, although the household's income

pro¯le is completely °at. The level of savings increases from 0 to a positive level.

    c1 c0+c1/R=y0+y1/R
R>1, β=1

E'
      c1*    45 degree line

   A
       y1       E

        c0+c1=y0+y1

  0       c0*  y0        c0

Figure 2:4: An increase in the real interest rate
(The case with ¯ = 1; y0 = y1 = y)

To explain why the household saves a positive amount in the case depicted in

Figure 2:4, suppose counter-factually that the household chooses zero savings. Since

the household's income is the same in the two periods, this means c0 = c1 = y. The

household's utility is U (y) in each period and, since the household does not discount

future utility in the current case, intertemporal utility is 2U(y). Now suppose that

the household tries to save a slightly positive amount ± > 0 and reduce consumption

at date 0 by the same amount. The budget constraint at date 0 holds with equality.

With the savings, the household will be able to consume c1 = y+R± in period 1. This

new consumption pro¯le gives the household intertemporal utility U (y¡±)+U(y+R±).
Since ± is very small, the di®erence between this utility level and the one generated

by a °at consumption pro¯le is:

[U(y ¡ ±) + U (y +R±)]¡ 2U(y)
= [U(y ¡ ±)¡ U(y)] + [U(y +R±)¡ U(y)]
¼ ¡U 0(y)± + U 0(y)R± = (R¡ 1)U 0(y)± > 0:

By saving a small amount ± and hence consuming ± less at date 0, the household
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experiences a reduction in utility at date 0 of the magnitude U 0(y)±. However, the

savings enable the household to increase consumption byR± at date 1, which increases

utility at date 1 by an amount U 0(y)R±. With no discounting of future utility, R > 1

implies that the gain outweighs the loss from saving a small amount.

Exercise 2.4.3 Assume U(c) = c1¡¾
1¡¾ , where ¾ > 0. With ¯ = 1 and y1 = y0 = y,

show that the optimal level of savings in the two-period economy is

s¤0 =
R1=¾ ¡ 1
R1=¾ +R

y:

Furthermore, show that s¤0 > 0 if and only if R > 1.

The situation depicted in Figure 2:4 illustrates an important e®ect of the

interest rate on savings | the intertemporal substitution e®ect. This e®ect arises

from the fact that an increase in the real interest rate e®ectively makes consumption

cheaper at date 1 than at date 0. (Recall that the real interest rate is the relative

price of date 0 goods to date 1 goods.) As the relative price of date-0 goods rises, the

household substitutes away from consumption of date-0 goods and into consumption

of date-1 goods. Therefore, the substitution e®ect of an increase in the real interest

rate always increases savings.

An increase in the interest rate also creates an income e®ect on savings, which

Figure 2:4 suppresses. In Figure 2:4, the household has zero savings before the in-

crease in the interest rate, and so the increase in the interest rate does not a®ect

the household's future income. If, instead, the household has non-zero savings, then

an increase in the interest rate will a®ect the household's interest income, Rs0, thus

changing future income. Suppose, for example, that the household has positive sav-

ings. An increase in the interest rate increases the household's interest income from

savings, and hence increases future income relative to current income. Anticipating

this rising income pro¯le, the household reduces savings in order to smooth consump-

tion. On the other hand, if the household has negative savings, an increase in the

interest rate increases the household's interest payment in date 1. In this case, future

income falls relative to current income, and the household increases savings in order

to smooth consumption.

Therefore, the income e®ect and the intertemporal substitution e®ect of the

interest rate on savings work in the same direction when the households has negative

savings but opposite directions when the household has positive savings. When they
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work in opposite directions, savings increase with the interest rate if and only if the

intertemporal substitution e®ect is stronger. The following example shows that for a

particular utility function, the intertemporal substitution e®ect dominates.

Example 2 Assume U (c) = ln c, ¯ = 1 and y0 > y1. Then, the household's optimal

decisions yield

c0 =
c1
R
=
1

2

µ
y0 +

y1
R

¶
:

The level of savings is s0 = y0 ¡ c0 = 1
2

³
y0 ¡ y1

R

´
. Clearly, s0 > 0 for any y0 > y1,

and so an increase in R generates an income e®ect that tends to reduce savings. This

income e®ect is dominated by the intertemporal substitution e®ect, as ds0=dR > 0.

A measure of the strength of intertemporal substitution is the elasticity of

intertemporal substitution. Because R is the relative price between goods at di®erent

dates, we can de¯ne the intertemporal elasticity as

¡d ln(c0=c1)
d ln(R)

:

In the above example, c0=c1 = 1=R, and so the elasticity of intertemporal substitu-

tion is 1. Another way to calculate the elasticity is ¡d ln(c0=c1)
d(u1=u2)

, which comes from

substituting the ¯rst-order condition R = u1=u2 in the de¯nition of the intertemporal

elasticity. For the time-additive utility function, with U (c) = c1¡¾¡1
1¡¾ , we can calculate

the elasticity of intertemporal substitution as 1=¾. The logarithmic utility function

is a special case of this, with ¾ = 1.

The following exercise shows how the elasticity of intertemporal substitution

determines the balance between the two e®ects of the interest rate on savings.

Exercise 2.4.4 When the utility function is U(c) = c1¡¾¡1
1¡¾ , where ¾ > 0, the elas-

ticity of intertemporal substitution is 1=¾. Assume ¯ = 1, R ¸ 1, y0 > 0 and y1 > 0.
Prove the following results.

(i) The optimal level of savings in the two-period economy is

s¤0 =
y0R1=¾ ¡ y1
R1=¾ +R

:

(ii) s¤0 · 0 always implies ds¤0=dR > 0.
(iii) If R = 1 and y0 < y1, then ds

¤
0=dR > 0 if and only if ¾ < (y0 + y1)=(y0 ¡ y1).
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2.4.4 Impatience toward Future

The third determinant of savings is the degree of impatience which the household has

toward future consumption and utility. Intuitively, the more impatient the household

is toward future, the less the savings are. When the intertemporal utility function

has the additive form, (2.9), it is easy to see that the discount factor, ¯, measures

the degree of patience and so the discount rate (1=¯ ¡ 1) measures the degree of
impatience. We sometimes call the latter the \rate of time preference".

    c1 c0+c1=y0+y1 R=1, β<1

   45 degree line

       y1

     E
      c1*   E'

  0  y0    c0*        c0

Figure 2:5: An increase in impatience toward future
(The case with R = 1; y0 = y1 = y)

To ¯nd the role of the rate of time preference for savings, assume that the

household's income pro¯le is °at and the real interest rate is 1. However, ¯ < 1. The

condition of the optimal consumption level c0, (2.17), becomes

U 0(c0) = ¯U 0(2y ¡ c0):

Savings are negative in this case. That is, it is optimal for the household to borrow

at date 0. The e®ect of an increase in impatience, i.e., a decrease in ¯, is depicted

in Figure 2:5. Point E is the optimal consumption choice when ¯ = 1 (and y1 = y0,

R = 1). At this point, the optimal level of savings is zero and so the optimal

consumption level in each period is equal to income in that period. When the discount

factor, ¯, falls to a level below one, the degree of impatience increases from 0 to a
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positive number. The household discounts future and the indi®erence curve rotates

counter-clockwise. The new optimal consumption pro¯le is given by point E0. Since

point E0 is below the 450 line, the household consumes more at date 0 than date 1,

although the household's income pro¯le is completely °at. Savings are negative at

point E0.

We can use the same method as in the last subsection to explain why savings

fall when the household becomes more impatient. Suppose that the household chooses

the same consumption level in the two periods, i.e., c0 = c1 = y. Let the household

reduce savings by a slightly positive amount ± and increase consumption at date 0 by

the same amount. This change in the consumption pro¯le increases utility at date 0

by U 0(y)±. The income from savings decreases by ± and so the utility level at date 1

decreases by U 0(y)±. Since future utility is discounted with the discount factor ¯, the

change in the consumption pro¯le changes intertemporal utility by U 0(y)±¡¯U 0(y)± =
(1 ¡ ¯)U 0(y)± > 0. That is, the household can increase intertemporal utility by

reducing savings slightly.

Exercise 2.4.5 Assume that the utility function is U(c) = c1¡¾
1¡¾ , where ¾ > 0. With

R = 1, y1 = y0 = y and ¯ < 1, show that the optimal level of savings in the two-period

economy is

s¤0 = ¡
1¡ ¯1=¾
¯1=¾ + 1

y:

Show that, in this case, optimal savings are higher when the household is more patient.

2.4.5 General Forms of Intertemporal Utility Function

With general forms of the intertemporal utility function, the level of optimal savings

is still s¤0 = y0 ¡ c¤0 but now c¤0 is given by (2.14). Substituting c1 = y1 +R(y0 ¡ c0),
(2.14) becomes

u1(c0; y1 +R(y0 ¡ c0))
u2(c0; y1 +R(y0 ¡ c0)) = R: (2.18)

Rather than trying to achieve a smooth consumption pro¯le, the household now

tries to obtain a smooth pro¯le of marginal utility of consumption. For example, if

R = 1, optimal savings are at such a level that makes discounted marginal utility of

consumption be the same in the two periods. Starting from the optimal consumption

pro¯le, a decrease in y1 relative to y0 or an increase in R tends to increase savings,

as in the case with an additive intertemporal utility function.
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To ¯nd the e®ect of impatience on savings when the intertemporal utility

function is general, we need to de¯ne the degree of impatience. Impatience can be

best measured when the household's consumption is the same at the two dates, i.e.,

when c0 = c1 = c. Along this smooth consumption pro¯le, if the household has a

higher marginal utility for current consumption than for future consumption, then the

household discounts future utility. That is, we can de¯ne the rate of time preference

as

½ ´ u1(c; c)

u2(c; c)
¡ 1 (2.19)

The household discounts future along the smooth consumption pro¯le if and only if

½ > 0.

The above de¯nition makes sense. With the additive intertemporal utility

function, the de¯nition recovers the discount rate 1=¯ ¡ 1, as shown in the following
exercise.

Exercise 2.4.6 When the intertemporal utility function has the form (2.9), show

that ½ = 1
¯
¡ 1.

When the intertemporal utility function is not time additive, the measure ½

can still be simple sometimes, as in the following exercise. Also, as in the time-

additive case, the more patient the household is toward the future, the higher the

savings.

Exercise 2.4.7 Let the intertemporal utility function be u(c0; c1) = c®0 c
1¡®
1 , where

® 2 (0; 1). Show that the rate of time preference is ½ = 2®¡1
1¡® . Use this utility function

to show that optimal levels of consumption and savings are as follows:

c¤0 = ®
µ
y0 +

y1
R

¶
; c¤1 = (1¡ ®)(Ry0 + y1); s¤0 = (1¡ ®)y0 ¡

®

R
y1:

Show that s¤0 increases with y0 for given y1, increases with R, and decreases with ½.
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