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Major stylized facts of business cycles:
a review
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Major stylized facts (revisited)

% deviations from trend: GDP vs Consumption
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Major stylized facts (revisited)

% deviations from trend: GDP vs Investment
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Major stylized facts (revisited)

% deviations from trend: GDP vs Price Index
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Major stylized facts (revisited)

% deviations from trend: GDP vs Money Supply

Next figures from Stephen Williamson, Macroeconomics, Addison-Wesley,
New York, 2005.
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Major stylized facts (revisited)

% deviations from trend: GDP vs Employment
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Major stylized facts (revisited)

% deviations from trend: GDP vs Productivity
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Major stylized facts — Summary

Major stylized facts of business cycles: Summary

From Stephen Williamson, Macroeconomics, Addison-Wesley, New York,
2005.

Attention: price level as countercyclical and coincident is
controversial!
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Major stylized facts — Summary

How modern Macro explains business
cycles
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How modern Macro explains business cycles

Models used to explain business cycles

1 Economies fluctuate over time
2 Systematic facts that need to be explained

1 volatility
2 Comovements
3 Persistence (the past impacts on the present): autocorrelation
4 How expectations affect current economic decisions

3 Theoretical models that have been presented to explain these facts:
1 Market clearing models

1 Misperception Lucas/Friedman model
2 Coordination failures
3 Real business cycles

2 Non-Market clearing models

1 New Keynesian model
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How modern Macro explains business cycles

Two competing models in modern macro

1 Real Business Cycles (RBC) vs New Keynesian Model (NKM)
2 A common framework:

1 Dynamic General Equilibrium
2 Stochastic shocks
3 Quantitative (or computational): simple parables is not enough
anymore

4 Forward looking (Rational) Expectations

3 A crucial divergence about information and prices:
1 complete and flexible (RBC)
2 incomplete and sticky (NKM)

4 Two major tools: we need to have good knowledge of
1 How to solve models with Rational Expectations
2 How to optimize over time (dynamic optimization)
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The Real Business Cycle model: introduction

The RBC model: introduction

1 The essence of the model:
1 Take the Solow growth model
2 Add shocks to Total Factor Productivity (the A variable in the Solow
Model)

3 Add leisure to account for changes in hours of work

2 A competitive equilibrium it’s about

1 Households: preferences
2 Firms: technology
3 Government: policy decisions

3 Real Factors: preferences, technology, policy decisions are all real
factors, that’s where the name comes from (Real Business Cycles)
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The Real Business Cycle model: introduction

TFP as the fundamental mechanism

1 The fundamental "mechanism" of the model is shocks to Total
Factor Productivity (TFP)

1 Remember the Figure of GDP vs Productivity for the US presented
above: the correlation positive and high

2 What happens if there is a "sunny day"(if productivity increases), or
a "rainy day"?

1 intertemporal substitution of labor and saving decisions

3 Major result: fluctuations as an equilibrium outcome
1 work harder, when productivity is high, because wages increase as labor
becomes more productive

2 save more, when productivity is high, because interest rates increase as
capital becomes more productive

4 Therefore, fluctuations are not as bad as usually considered
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The Real Business Cycle model: introduction

The Real Business Cycle Model:

the baseline version

1 There are many variations on the standard RBC model1

2 We follow the baseline version

1The seminal paper is by Finn Kydland and Edward Prescott (1982), Time to Build
and Aggregate Fluctuations, Econometrica, 50, 1345—1370).
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The Real Business Cycle model: baseline version Households

Households: the problem

1 Households maximize utility over time
2 Utility depends on consumption (C) and hours worked (N); u(C, N)
3 Intertemporal utility is discounted by a factor β, then

u(·) =

period t+0︷ ︸︸ ︷
β0 · u(Ct+0, Nt+0)+

period t+1︷ ︸︸ ︷
β1 · u(Ct+1, Nt+1)+

period t+2︷ ︸︸ ︷
β2 · u(Ct+2, Nt+2)+ ...

(1)
4 Notice that β0 = 1; the discount factor is β = 1/(1+ r), where r is
the subjective discount rate of future utility.
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The Real Business Cycle model: baseline version Households

Households: with uncertainty

1 Introducing uncertainty: the future values of (C, N) are not known
with certainty

2 Expectations operator: expectations operatoreq. (1) can be written
at time t as

u(·) = Et︸︷︷︸
??

[u(Ct, Nt)] + Et [β · u(Ct+1, Nt+1)] + ...

3 Notice that at t, the values of (Ct, Nt) are known:
Et [u(Ct, Nt)] = u(Ct, Nt)

4 The previous sum can be expressed in a more compact form

Et

[
∞

∑
i=0

βi · u(Ct+i, Nt+i)

]
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The Real Business Cycle model: baseline version Households

Households: utility function

1 Specific form of utility: assume that the utility function is given by 2

u(·) = C1−η

1− η
− ξN

where η, ξ are parameters
2 Notice that the utility function is linear in N and nonlinear in C
3 The function that households maximize is given by

max Et

[
∞

∑
i=0

βi ·
(

C1−η
t+i

1− η
− ξNt+i

)]
(2)

4 The household’s behavior is caracterized: let’s move to the firm’s
side

2Atention: Whelan’s notation was changed (ξ instead of a), because ”a” is used
twice in his text (for two different meanings) and that may be confusing.
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The Real Business Cycle model: baseline version Firms

Firms: production

1 Production: firms produce goods and services with the following
production function

Yt = AtKα
t−1N1−α

t (3)

Y is output, K is capital, N is labor, A is Total Factor Productivity
(TFP), and α is the output/capital elasticity

2 Two relevant points:

1 The stock of capital (K) at t is given by its level accumulated up to
t− 1

2 Constant returns to scale with respect to the two factors that are
remunerated (K, N)

3 How K, N, A are accumulated over time?
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The Real Business Cycle model: baseline version Firms

Firms: accumulation of inputs

1 Capital: the accumulation of K obeys

Kt = Kt−1 + It − δKt−1︸ ︷︷ ︸
∆K

= (1− δ)Kt−1 + It (4)

where It is investment and δ the depreciation rate
2 TFP: assume TFP does not increase over time (no trend), fluctuates
around its steady state value (A∗), due to exogenous shocks (εt)

ln At = (1− ρ) ln A∗ + ρ ln At−1 + εt , ρ < 1 (5)

1 Why logarithms (ln)? To make things easier
2 Define at = ln At − ln A∗, then (5) can be written as

at = ρat−1 + εt (6)

i.e., the log-deviation of TFP from its steady state is an AR(1) process
with ρ < 1.

3 Labor force: stays constant over time.
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The Real Business Cycle model: baseline version The central planner solution

The optimal problem for the central planner

1 There are two ways to solve for the equilibrium: a decentralized
equilibrium and a central planner equilibrium

2 A social planner that maximizes the objective function subject to
a resource constraint.

3 The constraint is derived from the well known national accounting
identity

Yt = Ct + It = AtKα
t−1N1−α

t (7)

4 Production (Yt) is affected by the level of capital (4)

Kt = (1− δ)Kt−1 + It

5 Consolidating: (7) and (4) can be consolidated by cancelling out It,
we get

AtKα
t−1N1−α

t = Ct + Kt − (1− δ)Kt−1
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The Real Business Cycle model: baseline version The Lagrangian

The maximization of utility: the Lagrangian

1 The Lagrangian looks formidable but is like the "Boooo" story

L = Et

[
∞

∑
i=0

βi

{(
C1−η

t+i

1− η
− ξNt+i

)
+ λt+i

(
At+iKα

t+i−1N1−α
t+i + (1− δ)Kt+i−1 − Ct+i − Kt+i

)}]
where λt stands for the Lagrangian multiplier

2 FOCs: write the Lagrangian for two consecutive periods (as in the
Solow model) and take first order conditions (FOC) with respect to
Ct, Kt, Nt, λt

∂L/∂Ct = 0, ∂L/∂Kt = 0, ∂L/∂Nt = 0, ∂L/∂λt = 0

3 A small trick: it will be useful to define the marginal value of an
additional unit of capital next year (Rt+1) as

Rt+1 ≡ α
Yt+1

Kt
+ 1− δ (8)
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The Real Business Cycle model: baseline version The Lagrangian

The Lagrangian for two consecutive periods

1 To avoid too many symbols: use the generic utility function

u (Ct, Nt) instead of u = C1−η
t+i

1−η − ξNt+i

2 Here is the L function for t and t+ 1 (forget about expectations for
now)

L = ...+ β0{u (Ct, Nt) + λt(AtKα
t−1N1−α

t + (1− δ)Kt−1 − Ct − Kt)}
+β1{u (Ct+1, Nt+1) + λt+1(At+1Kα

t N1−α
t+1 + (1− δ)Kt − Ct+1 − Kt+1)}+ ...

3 Now let’s go for the two firts FOCs

∂L/∂Ct = β0
(

u
′
Ct
− λt

)
= 0 (9)

∂L/∂Kt = −β0 · λt + β1 · λt+1

α ·At+1Kα−1
t N1−α

t+1︸ ︷︷ ︸
=Yt+1/Kt

+1− δ

 = 0(10)
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The Real Business Cycle model: baseline version The Lagrangian

The Lagrangian for two consecutive periods

1 Here is the L function for t and t+ 1 again

L = ...+ β0{u (Ct, Nt) + λt(AtKα
t−1N1−α

t + (1− δ)Kt−1 − Ct − Kt)}
+β1{u (Ct+1, Nt+1) + λt+1(At+1Kα

t N1−α
t+1 + (1− δ)Kt − Ct+1 − Kt+1)}+ ...

2 Now let’s go for the two last FOCs

∂L/∂Nt = β0

u
′
Nt
+ λt(1− α)AtKα

t−1N−α
t︸ ︷︷ ︸

=Yt/Nt

 = 0 (11)

∂L/∂λt = β0
(

AtKα
t−1N1−α

t + (1− δ)Kt−1 − Ct − Kt

)
= 0(12)
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The Real Business Cycle model: baseline version First Order Conditions (FOCs)

The FOCs simplified

1 The 4 FOCs can be written as

∂L/∂Ct = β0
(

u
′
Ct
− λt

)
= 0

∂L/∂Kt = −β0 · λt + β1 · λt+1

(
α

Yt+1

Kt
+ 1− δ

)
︸ ︷︷ ︸

Rt+1

= 0

∂L/∂Nt = β0
[

u
′
Nt
+ λt(1− α)

Yt

Nt

]
= 0

∂L/∂λt = β0
(

AtKα
t−1N1−α

t + (1− δ)Kt−1 − Ct − Kt

)
= 0

2 They can be simplified: eliminate λt, λt+1. From ∂L/∂Ct = 0, we
know that as β0 = 1, then u

′
Ct
− λt = 0, that is

u
′
Ct
= λt , u

′
Ct+1

= λt+1
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The Real Business Cycle model: baseline version First Order Conditions (FOCs)

The FOCs simplified

1 Insert previous result u
′
Ct
= λt , u

′
Ct+1

= λt+1 into the FOC
∂L/∂Kt, and get the well known Euler equation

u
′
Ct
= β(u

′
Ct+1

Rt+1) (13)

2 Let’s bring expectations back into eq. (13)
3 The Euler equation with uncertainty is

Et

(
u
′
Ct

)
= Et

(
β(u

′
Ct+1
· Rt+1)

)
u
′
Ct

= Et

(
β(u

′
Ct+1
· Rt+1)

)
4 The specific utility function can now be applied and considering that

u
′
Ct+i

=
∂ (u(·, ·))

∂Ct+i
= C−η

t+i

5 The Euler equation appears as

C−η
t︸︷︷︸

MUt

= β ·Et

(
C−η

t+1Rt+1

)
︸ ︷︷ ︸
Et(MUt+1·Rt+1)

(14)
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The Real Business Cycle model: baseline version First Order Conditions (FOCs)

More on FOCs

1 Notice that from the FOCs ∂L/∂Ct = 0, ∂L/∂Nt = 0 we can get
another result by cancelling out λt

2 Firstly,

βt
[

u
′
Nt
− λt(1− α)

Yt

Nt

]
= 0

3 As as βt 6= 0, therefore

u
′
Nt
− λt(1− α)

Yt

Nt
= 0

4 But as u
′
Nt
= −ξ, and λt = u

′
Ct
,we get3

Yt

Nt
=

ξ

1− α
Cη

t (15)

3Note that u
′
Nt+i

=
∂

(
C1−η

t+i
1−η −ξNt+i

)
∂Nt+i

= −ξ
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The Real Business Cycle model: baseline version First Order Conditions (FOCs)

The maximization of utility: 4 equations x 5 variables

1 The FOCs give us 3 eq. (8)+(14)+(15) involving 5 variables

(Yt+i, Nt+i, Ct+i, Rt+i, Kt+i)
∞
i=0

2 The system is indeterminate. We need two further eq. to get avoid
indeterminacy

1 the production function (eq. 3)
2 the capital accumulation (eq. 4).

3 But these two bring another two variables into the system (At, It),
which requires two further equations: (7) and (5).

4 Now the system can be solved: we have a system of 7 equations ×
7 unknowns

(Yt+i, Nt+i, Ct+i, Rt+i, Kt+i, At+i, It+i)
∞
i=0

(Mestrados de Economia ) Real Business Cycle Model 16 October 2013 29 / 52



The Real Business Cycle model: baseline version A nonlinear model: summary

A nonlinear model: summary

1 Our seven equations are:

Rt+1 ≡ α (Yt+1/Kt) + 1− δ (S1)

C−η
t = βEt(C

−η
t+1Rt+1) (S2)

Yt/Nt = [ξ/ (1− α)]Cη
t (S3)

Kt = (1− δ)Kt−1 + It (S4)

Yt = AtKα
t−1N1−α

t (S5)

Ct + It = Yt (S6)

ln At = (1− ρ) ln A∗ + ρ ln At−1 + εt (S7)

2 A nonlinear system of stochastic difference equations (some of them
are nonlinear)

3 Solutions are extremely diffi cult (if not impossible) to be obtained
for these systems

4 A trick̇: linearize the system in the vicinity of the steady state.
Widely used and very useful in economics
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The Real Business Cycle model: baseline version Linearization

Linearization: what is it?

1 We shall recall a number of points:
1 The system has 7 endogenous variables
(Yt+i, Nt+i, Ct+i, Rt+i, Kt+i, At+i, It+i)

∞
i=0

2 In steady state, for any variable vt, we get: vt = vt+1 = v̄
3 The natural way to linearize an equation is to apply logs, or ∆log (first
difference in logs)

4 Remember that ∆log is approximately equal to a growth rate

2 We will apply ∆log to our system
1 Linearization may look very complicated, but in fact it’s extremely
simple

3 We only need to know how to transform the equations of the
model into ∆log functions
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Linearization: functions from levels into log differences

Linearization:
functions from levels into log differences
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Linearization: functions from levels into log differences

Transforming functions into log-differences: first case

1 A linear function: Yt = 2Xt. Apply logs to two consecutive periods:

ln Yt = ln 2+ ln Xt

ln Yt+1 = ln 2+ ln Xt+1

2 Therefore, the first difference of logs is

ln Yt+1 − ln Yt︸ ︷︷ ︸
growth rate: y

= (ln 2+ ln Xt+1)− (ln 2+ ln Xt) = ln Xt+1 − ln Xt︸ ︷︷ ︸
growth rate: x

3 In this kind of function, the growth rate of Y, let’s call it (y), is equal
to the growth rate of X, (x)

y = x

4 Don´t forget: we use small letters to express the growth rate of a
variable
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Linearization: functions from levels into log differences

Transforming functions into log-differences: second case

1 A linear function of two independent variables: Yt = 2XtZt.
2 Apply logs to two consecutive periods, and you will get

y = x+ z

3 Prove this result yourself.
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Linearization: functions from levels into log differences

Transforming functions into log-differences: third case

1 A power function: Yt = 2XtZ−3
t .

2 Apply logs

ln Yt = ln 2+ ln Xt − 3 ln Zt

ln Yt+1 = ln 2+ ln Xt+1 − 3 ln Zt+1

3 Therefore, the first difference of logs is

ln Yt+1 − ln Yt︸ ︷︷ ︸
growth rate: y

= (ln 2+ ln Xt+1 − 3 ln Zt+1)− (ln 2+ ln Xt − 3 ln Zt)

= ln Xt+1 − ln Xt︸ ︷︷ ︸
growth rate: x

− 3(ln Zt+1 − ln Zt)︸ ︷︷ ︸
growth rate: z

4 So this power function can be written in ∆log as

y = x− 3z

(Mestrados de Economia ) Real Business Cycle Model 16 October 2013 35 / 52



Linearization: functions from levels into log differences

Transforming functions into log-differences: fourth case

1 The last function we need to consider is an additive function like

Yt+1 = Xt+1 + Zt+1

2 Here we can’t apply logs. But there is another way
3 Firstly, multiply and divide through as follows

Yt+1

Yt
Yt =

Xt+1

Xt
Xt +

Zt+1

Zt
Zt.

4 Now apply the following: Yt+1
Yt
= 1+ y, Xt+1

Xt
= 1+ x, Zt+1

Zt
= 1+ z,

and the previous eq. can be written as

(1+ y)Yt = (1+ x)Xt + (1+ z)Zt

5 Divide through by Yt and get

1+ y = (1+ x)
Xt

Yt
+ (1+ z)

Zt

Yt
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Linearization: functions from levels into log differences

Transforming functions into log-differences: fourth case
(cont.)

1 Notice that the previous equation can be written as

1+ y =
(

Xt

Yt
+

Zt

Yt

)
︸ ︷︷ ︸
=(Xt+Zt)/Yt=1

+ x
Xt

Yt
+ z

Zt

Yt

2 Therefore, an additive function likeYt+1 = Xt+1 + Zt+1 can be
expressed as

y = x
Xt

Yt
+ z

Zt

Yt

3 Notice that if Z = 2, its growth rate were z = 0, and we would get

y = x
Xt

Yt
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Linearization: functions from levels into log differences

Transforming functions into log-differences: summary

1 Let’s summarize our results

Variables in levels Variables in ∆logs

Yt = 2Xt ⇔ y = x

Yt = 2XtZt ⇔ y = x+ z

Yt = 2XtZ−3
t ⇔ y = x− 3z

Yt+1 = Xt+1 + Zt+1 ⇔ y = x Xt
Yt
+ z Zt

Yt

Yt+1 = Xt+1 + a ⇔ y = x Xt
Yt
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Linearizing the RBC model in the vicinity of the steady state

Linearizing the RBC model in the vicinity
of the steady state
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Linearizing the RBC model in the vicinity of the steady state

Linearization

1 Transforming our system into a linear one

C−η
t = βEt(C

−η
t+1Rt+1) ⇔ ct = Etct+1 − 1

η Etrt+1

Yt/Nt = [ξ/ (1− α)]Cη
t ⇔ nt = yt − ηct

Kt = (1− δ)Kt−1 + It ⇔ kt = (1− δ)kt−1
Kt−2
Kt−1

+ it It
Kt

Yt = AtKα
t−1N1−α

t ⇔ yt = at + αkt−1 + (1− α)nt

Ct + It = Yt ⇔ yt = ct
Ct
Yt
+ it It

Yt

Rt ≡ α (Yt/Kt−1) + 1− δ ⇔ rt =
α
Rt

Yt
Kt−1

(yt − kt−1)

ln At = (1− ρ) ln A∗ + ρ ln At−1 + εt ⇔ at = ρat−1 + εt

Notice that now our system is: 7 eq. × 12 unknowns:
(c, r, n, y, k, i, a) plus (K, C, Y, I, R).
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Linearizing the RBC model in the vicinity of the steady state

Linearization: one example

1 One example. Let us solve the less simple equation of the whole set

Rt ≡ α (Yt/Kt−1) + 1− δ

2 Simplify the previous equation by assuming that

Zt ≡ Yt/Kt−1, and φ ≡ 1− δ

3 Then we have
Rt ≡ αZt + φ

4 Now apply the rule discussed above and get

rt = αzt
Zt

Rt
5 But as zt = yt − kt−1
6 We get the final result as

rt =
α

Rt

Yt

Kt−1
(yt − kt−1)
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Linearizing the RBC model in the vicinity of the steady state Determining the steady state

Determining the steady state

1 In the set (K, C, Y, I, R) each variable can be determined because we
are linearizing near the steady state.

2 Remember that in the vicinity of the steady state, for any vt, we get
vt = vt+1 = v̄, then vt/vt+1 = 1.

3 Let’s start with the Euler equation (eq. S2), as Ct = Ct+1 = C̄, then

C−η
t = βEt(C

−η
t+1Rt+1)

1 = βEt

[(
Ct

Ct+1

)η

Rt+1

]
= βR̄

R̄ = β−1

4 If R̄ = β−1, then from eq. (S1) we can obtain

β−1 ≡ α

(
Ȳ
K̄

)
+ 1− δ

Ȳ
K̄

=
β−1 + δ− 1

α
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Linearizing the RBC model in the vicinity of the steady state Determining the steady state

Determining the steady state (continued)

1 As we know that R̄ = β−1 and Ȳ
K̄ =

β−1+δ−1
α , then

α

R̄
Ȳ
K̄
= 1− β(1− δ)

2 Next, from eq.(S4)

K̄ = (1− δ)K̄+ Ī
Ī
K̄

= δ

3 and
Ī
Ȳ
=

Ī
K̄
Ȳ
K̄

= φ, for simplicity with φ =
αβ

β−1 + δ− 1
4 and finally

C̄
Ȳ
= 1− Ī

Ȳ
= 1− φ
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Linearizing the RBC model in the vicinity of the steady state Summary

Summary: our linearized model in the vicinity of the steady
state

1 Our system of stochastic linear difference equations with rational
expectations looks like: 7eq. × 7 unknowns

ct = Etct+1 −
1
η

Etrt+1

nt = yt − ηct

kt = (1− δ)kt−1 + δit
yt = at + αkt−1 + (1− α)nt−1

yt = ct(1− φ) + φit
rt = [1− β(1− δ)] (yt − kt−1)

at = ρat−1 + εt

With φ = αβ

β−1+δ−1
.

(Mestrados de Economia ) Real Business Cycle Model 16 October 2013 44 / 52



Numerical simulation of the linearized model

Numerical simulation of the linearized
model
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Numerical simulation of the linearized model

Numerical simulation

1 After a closed form solution is obtained by eliminating the
expectations operators

2 If we give numbers to the parameters, we can take the model to the
computer and simulate the impact of shocks upon the
endogenous variables

3 We use a routine for Matlab developed by Harald Uhlig, now at the
University of Chicago.

4 See this link to get much more variations on the RBC model taken to
the computer, written by Jesus Fernandez-Villaverde (University of
Pennsylvania) www.cepremap.cnrs.fr/juillard/mambo/

5 Calibrate the model:
α = 0.4, δ = 0.012, ρ = 0.95, β = 0.987, σε = 0.007, and ξ such that
n̄ = 1/3.

6 See the next figures
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Numerical simulation of the linearized model

Output vs consumption
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Numerical simulation of the linearized model

Output vs TFP
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Numerical simulation of the linearized model

Capital, interest rate, TFP and labor
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Impulse response functions

A positive technological shock
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Impulse response functions

A one % increase in capital
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The Real Business Cycle model - Shortcomings

The RBC model: shortcomings

1 Reproduces relatively well several stylized facts of business cycles
1 Output is nearly as volatile as in the data (1.39% vs. 1.81%).
2 Consumption is less volatile than output (0.44 vs. 0.74)
3 Investment is more volatile (3 times)
4 Persistence is high

2 It seems OK with covariances
3 Serious problems:

1 Variability of hours of work is understated as well as consumption
2 Real wages and interest rates are highly procyclical (not so in the data)
3 Where do the negative shocks come from?
4 No role for monetary policy
5 Fiscal policy is of little help due to Ricardian equivalence
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